Přístupnostní navigace
E-application
Search Search Close
Publication detail
TRYHUK, V.
Original Title
On global transformations of ordinary differential equations of the second order
Type
journal article - other
Language
English
Original Abstract
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable. A result given by J. Aczél is generalized. A functional equation of the form f(t,vy,wy+uvz)=f(x,y,z)u^2v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz is solved on R for nonzero y and v..
Keywords
ordinary differential equations, linear differential equations, transformations, functional equations, global transformations
Authors
RIV year
2000
Released
1. 1. 2000
Publisher
ČSAV
Location
Praha
ISBN
0011-4642
Periodical
Czechoslovak Mathematical Journal
Year of study
50
Number
125
State
Czech Republic
Pages from
499
Pages to
508
Pages count
10
BibTex
@article{BUT39560, author="Václav {Tryhuk}", title="On global transformations of ordinary differential equations of the second order", journal="Czechoslovak Mathematical Journal", year="2000", volume="50", number="125", pages="499--508", issn="0011-4642" }