Detail publikace

On global transformations of ordinary differential equations of the second order

TRYHUK, V.

Originální název

On global transformations of ordinary differential equations of the second order

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable. A result given by J. Aczél is generalized. A functional equation of the form f(t,vy,wy+uvz)=f(x,y,z)u^2v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz is solved on R for nonzero y and v..

Klíčová slova

ordinary differential equations, linear differential equations, transformations, functional equations, global transformations

Autoři

TRYHUK, V.

Rok RIV

2000

Vydáno

1. 1. 2000

Nakladatel

ČSAV

Místo

Praha

ISSN

0011-4642

Periodikum

Czechoslovak Mathematical Journal

Ročník

50

Číslo

125

Stát

Česká republika

Strany od

499

Strany do

508

Strany počet

10

BibTex

@article{BUT39560,
  author="Václav {Tryhuk}",
  title="On global transformations of ordinary differential equations of the second order",
  journal="Czechoslovak Mathematical Journal",
  year="2000",
  volume="50",
  number="125",
  pages="499--508",
  issn="0011-4642"
}