Detail publikace
On global transformations of ordinary differential equations of the second order
TRYHUK, V.
Originální název
On global transformations of ordinary differential equations of the second order
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable. A result given by J. Aczél is generalized. A functional equation of the form f(t,vy,wy+uvz)=f(x,y,z)u^2v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz is solved on R for nonzero y and v..
Klíčová slova
ordinary differential equations, linear differential equations, transformations, functional equations, global transformations
Autoři
TRYHUK, V.
Rok RIV
2000
Vydáno
1. 1. 2000
Nakladatel
ČSAV
Místo
Praha
ISSN
0011-4642
Periodikum
Czechoslovak Mathematical Journal
Ročník
50
Číslo
125
Stát
Česká republika
Strany od
499
Strany do
508
Strany počet
10
BibTex
@article{BUT39560,
author="Václav {Tryhuk}",
title="On global transformations of ordinary differential equations of the second order",
journal="Czechoslovak Mathematical Journal",
year="2000",
volume="50",
number="125",
pages="499--508",
issn="0011-4642"
}