Publication detail

On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations

TRYHUK, V.

Original Title

On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations

Type

journal article - other

Language

English

Original Abstract

The paper describes the general form of an ordinary differential equation of the order $n+1 (n\geq 1)$ with $m (m\geq 1)$ delays which allows a nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation $f(s,W\vec v,W_{(1)}\vec v_{(1)},\ldots,W_{(m)}\vec v_{(m)})=\sum_{i=0}^n w_{n+1 i}v_i+w_{n+1 n+1}f(x,\vec v,\vec v_{(1)},\ldots,\vec v_{(m)}),$ $s,x\in R; W,W_{(1)},\ldots,W_{(m)}$ are real valued $n+1$ by $n+1$ matrices, $\vec v, \vec v_{(j)}\in R^{n+1}; w_{ij}=a_{ij}(x_1,\ldots,x_{i-j+1},u,u_1,\ldots,u_{i-j})$ for a given functions $a_{ij}$ is solved on $R, u\neq 0.$

Key words in English

ordinary differential equation, functional-differential equation, transformation, functional equation

Authors

TRYHUK, V.

Released

1. 1. 1999

Publisher

SAV

Location

Bratislava

ISBN

0139-9918

Periodical

Mathematica Slovaca

Year of study

49

Number

5

State

Slovak Republic

Pages from

515

Pages to

530

Pages count

16

BibTex

@article{BUT40883,
  author="Václav {Tryhuk}",
  title="On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations",
  journal="Mathematica Slovaca",
  year="1999",
  volume="49",
  number="5",
  pages="515--530",
  issn="0139-9918"
}