Přístupnostní navigace
E-application
Search Search Close
Publication detail
TRYHUK, V.
Original Title
On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations
Type
journal article - other
Language
English
Original Abstract
The paper describes the general form of an ordinary differential equation of the order $n+1 (n\geq 1)$ with $m (m\geq 1)$ delays which allows a nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation $f(s,W\vec v,W_{(1)}\vec v_{(1)},\ldots,W_{(m)}\vec v_{(m)})=\sum_{i=0}^n w_{n+1 i}v_i+w_{n+1 n+1}f(x,\vec v,\vec v_{(1)},\ldots,\vec v_{(m)}),$ $s,x\in R; W,W_{(1)},\ldots,W_{(m)}$ are real valued $n+1$ by $n+1$ matrices, $\vec v, \vec v_{(j)}\in R^{n+1}; w_{ij}=a_{ij}(x_1,\ldots,x_{i-j+1},u,u_1,\ldots,u_{i-j})$ for a given functions $a_{ij}$ is solved on $R, u\neq 0.$
Key words in English
ordinary differential equation, functional-differential equation, transformation, functional equation
Authors
Released
1. 1. 1999
Publisher
SAV
Location
Bratislava
ISBN
0139-9918
Periodical
Mathematica Slovaca
Year of study
49
Number
5
State
Slovak Republic
Pages from
515
Pages to
530
Pages count
16
BibTex
@article{BUT40883, author="Václav {Tryhuk}", title="On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations", journal="Mathematica Slovaca", year="1999", volume="49", number="5", pages="515--530", issn="0139-9918" }