Detail publikace

On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations

TRYHUK, V.

Originální název

On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The paper describes the general form of an ordinary differential equation of the order $n+1 (n\geq 1)$ with $m (m\geq 1)$ delays which allows a nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation $f(s,W\vec v,W_{(1)}\vec v_{(1)},\ldots,W_{(m)}\vec v_{(m)})=\sum_{i=0}^n w_{n+1 i}v_i+w_{n+1 n+1}f(x,\vec v,\vec v_{(1)},\ldots,\vec v_{(m)}),$ $s,x\in R; W,W_{(1)},\ldots,W_{(m)}$ are real valued $n+1$ by $n+1$ matrices, $\vec v, \vec v_{(j)}\in R^{n+1}; w_{ij}=a_{ij}(x_1,\ldots,x_{i-j+1},u,u_1,\ldots,u_{i-j})$ for a given functions $a_{ij}$ is solved on $R, u\neq 0.$

Klíčová slova v angličtině

ordinary differential equation, functional-differential equation, transformation, functional equation

Autoři

TRYHUK, V.

Vydáno

1. 1. 1999

Nakladatel

SAV

Místo

Bratislava

ISSN

0139-9918

Periodikum

Mathematica Slovaca

Ročník

49

Číslo

5

Stát

Slovenská republika

Strany od

515

Strany do

530

Strany počet

16

BibTex

@article{BUT40883,
  author="Václav {Tryhuk}",
  title="On transformations $z(t)=L(t)y(\varphi (t))$ of functional-differential equations",
  journal="Mathematica Slovaca",
  year="1999",
  volume="49",
  number="5",
  pages="515--530",
  issn="0139-9918"
}