Publication detail

Transformations $z(t)=L(t)y(\varphi (t))$ of ordinary differential equations

TRYHUK, V.

Original Title

Transformations $z(t)=L(t)y(\varphi (t))$ of ordinary differential equations

Type

journal article - other

Language

English

Original Abstract

The paper describes the general form of an ordinary differential equation of an order $n+1 (n\geq 1)$, which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form $f(s,w_{00}v_0,\ldots,\sum_{j=0}^n w_{nj}v_j)=\sum_{j=0}^n w_{n+1 j}v_j+w_{n+1 n+1}f(x,v,v_1,\ldots,v_n),$ where $w_{n+1 0}=h(s,x,x_1,u,u_1,\ldots,u_n), w_{n+1 1}=g(s,x,x_1,\ldots,x_n,u,u_1,\ldots,u_{i-j})$ and $w_{ij}=a_{ij}(x_1,\ldots,x_{i-j+1},u,u_1,\ldots,u_{i-j},$ for the given functions $a_{ij}$ is solved on R, $u\neq 0$.

Key words in English

ordinary differential equations, linear differential equations, transformations, functional equations

Authors

TRYHUK, V.

Released

1. 1. 2000

Publisher

ČSAV

Location

Praha

ISBN

0011-4642

Periodical

Czechoslovak Mathematical Journal

Year of study

50

Number

125

State

Czech Republic

Pages from

519

Pages to

529

Pages count

11

BibTex

@article{BUT40884,
  author="Václav {Tryhuk}",
  title="Transformations $z(t)=L(t)y(\varphi (t))$ of ordinary differential equations",
  journal="Czechoslovak Mathematical Journal",
  year="2000",
  volume="50",
  number="125",
  pages="519--529",
  issn="0011-4642"
}