Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
TRYHUK, V.
Originální název
Transformations $z(t)=L(t)y(\varphi (t))$ of ordinary differential equations
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The paper describes the general form of an ordinary differential equation of an order $n+1 (n\geq 1)$, which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form $f(s,w_{00}v_0,\ldots,\sum_{j=0}^n w_{nj}v_j)=\sum_{j=0}^n w_{n+1 j}v_j+w_{n+1 n+1}f(x,v,v_1,\ldots,v_n),$ where $w_{n+1 0}=h(s,x,x_1,u,u_1,\ldots,u_n), w_{n+1 1}=g(s,x,x_1,\ldots,x_n,u,u_1,\ldots,u_{i-j})$ and $w_{ij}=a_{ij}(x_1,\ldots,x_{i-j+1},u,u_1,\ldots,u_{i-j},$ for the given functions $a_{ij}$ is solved on R, $u\neq 0$.
Klíčová slova v angličtině
ordinary differential equations, linear differential equations, transformations, functional equations
Autoři
Vydáno
1. 1. 2000
Nakladatel
ČSAV
Místo
Praha
ISSN
0011-4642
Periodikum
Czechoslovak Mathematical Journal
Ročník
50
Číslo
125
Stát
Česká republika
Strany od
519
Strany do
529
Strany počet
11
BibTex
@article{BUT40884, author="Václav {Tryhuk}", title="Transformations $z(t)=L(t)y(\varphi (t))$ of ordinary differential equations", journal="Czechoslovak Mathematical Journal", year="2000", volume="50", number="125", pages="519--529", issn="0011-4642" }