Publication detail

Finite volume evolution Galerkin methods for Euler equations of gas dynamics

LUKÁČOVÁ, M., MORTON, K., WARNECKE, G.

Original Title

Finite volume evolution Galerkin methods for Euler equations of gas dynamics

Type

journal article - other

Language

English

Original Abstract

The aim of this paper is a derivation of a new multidimensional high-resolution finite volume evolution Galerkin method for system of the Euler equations of gas dynamics. Instead of solving one-dimensional Riemann problems in directions normal to cell interfaces the finite volume evolution Galerkin schemes are based on a genuinely multidimensional approach.

Keywords

hyperbolic systems of conservation laws, Euler equations, genuinely multidimensional schemes, evolution Galerkin methods

Authors

LUKÁČOVÁ, M., MORTON, K., WARNECKE, G.

RIV year

2002

Released

1. 9. 2002

ISBN

0271-2091

Periodical

International Journal for Numerical Methods in Fluids

Year of study

2002

Number

40

State

United Kingdom of Great Britain and Northern Ireland

Pages from

425

Pages to

444

Pages count

20

BibTex

@article{BUT40974,
  author="Mária {Lukáčová} and K.W. {Morton} and Gerald {Warnecke}",
  title="Finite volume evolution Galerkin methods for Euler equations of gas dynamics",
  journal="International Journal for Numerical Methods in Fluids",
  year="2002",
  volume="2002",
  number="40",
  pages="20",
  issn="0271-2091"
}