Detail publikačního výsledku

Finite volume evolution Galerkin methods for Euler equations of gas dynamics

LUKÁČOVÁ, M., MORTON, K., WARNECKE, G.

Originální název

Finite volume evolution Galerkin methods for Euler equations of gas dynamics

Anglický název

Finite volume evolution Galerkin methods for Euler equations of gas dynamics

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

The aim of this paper is a derivation of a new multidimensional high-resolution finite volume evolution Galerkin method for system of the Euler equations of gas dynamics. Instead of solving one-dimensional Riemann problems in directions normal to cell interfaces the finite volume evolution Galerkin schemes are based on a genuinely multidimensional approach.

Anglický abstrakt

The aim of this paper is a derivation of a new multidimensional high-resolution finite volume evolution Galerkin method for system of the Euler equations of gas dynamics. Instead of solving one-dimensional Riemann problems in directions normal to cell interfaces the finite volume evolution Galerkin schemes are based on a genuinely multidimensional approach.

Klíčová slova

hyperbolic systems of conservation laws, Euler equations, genuinely multidimensional schemes, evolution Galerkin methods

Klíčová slova v angličtině

hyperbolic systems of conservation laws, Euler equations, genuinely multidimensional schemes, evolution Galerkin methods

Autoři

LUKÁČOVÁ, M., MORTON, K., WARNECKE, G.

Vydáno

01.09.2002

ISSN

0271-2091

Periodikum

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Svazek

2002

Číslo

40

Stát

Spojené království Velké Británie a Severního Irska

Strany od

425

Strany počet

20

BibTex

@article{BUT40974,
  author="Mária {Lukáčová} and K.W. {Morton} and Gerald {Warnecke}",
  title="Finite volume evolution Galerkin methods for Euler equations of gas dynamics",
  journal="INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS",
  year="2002",
  volume="2002",
  number="40",
  pages="20",
  issn="0271-2091"
}