Přístupnostní navigace
E-application
Search Search Close
Publication detail
PŘIBYL, O. STANĚK, S.
Original Title
Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions
Type
journal article - other
Language
English
Original Abstract
The singular boundary value problem $(\phi(x'))' + \mu f(t,x,x')=0$, $x(0)+x(T)=0$, $x'(0)+x'(T)=0$, $\max\{x(t): 0 \le t \le T\}=A$ depending on the parameter $\mu$ is considered. Here the function $f$ satisfies local Carath\'eodory conditions on $[0,T] \times (\R\setminus \{0\})^2$ and $f$ may be singular at the zero value of its phase variables. The paper presents conditions which guarantee that for any $A>0$ there exists $\mu_A >0$ such that the above problem with $\mu=\mu_A$ has a solution. The proofs are based on regularization and sequential techniques and use the Leray-Schauder degree.
Keywords
Singular boundary value problem, antiperiodic boundary conditions, dependence on a parameter, $\phi$-Laplacian, existence, Leray-Schauder degree.
Authors
PŘIBYL, O.; STANĚK, S.
Released
1. 6. 2007
Publisher
Functional Differential Equations
ISBN
0793-1786
Periodical
Year of study
14
Number
2/4
State
State of Israel
Pages from
103
Pages to
114
Pages count
12
BibTex
@article{BUT44364, author="Oto {Přibyl} and Svatoslav {Staněk}", title="Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions", journal="Functional Differential Equations", year="2007", volume="14", number="2/4", pages="103--114", issn="0793-1786" }