Detail publikace
Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions
PŘIBYL, O. STANĚK, S.
Originální název
Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The singular boundary value problem $(\phi(x'))' + \mu f(t,x,x')=0$, $x(0)+x(T)=0$, $x'(0)+x'(T)=0$, $\max\{x(t): 0 \le t \le T\}=A$ depending on the parameter $\mu$ is considered. Here the function $f$ satisfies local Carath\'eodory conditions on $[0,T] \times (\R\setminus \{0\})^2$ and $f$ may be singular at the zero value of its phase variables. The paper presents conditions which guarantee that for any $A>0$ there exists $\mu_A >0$ such that the above problem with $\mu=\mu_A$ has a solution. The proofs are based on regularization and sequential techniques and use the Leray-Schauder degree.
Klíčová slova
Singular boundary value problem, antiperiodic boundary conditions, dependence on a parameter, $\phi$-Laplacian, existence, Leray-Schauder degree.
Autoři
PŘIBYL, O.; STANĚK, S.
Vydáno
1. 6. 2007
Nakladatel
Functional Differential Equations
ISSN
0793-1786
Periodikum
Functional Differential Equations
Ročník
14
Číslo
2/4
Stát
Stát Izrael
Strany od
103
Strany do
114
Strany počet
12
BibTex
@article{BUT44364,
author="Oto {Přibyl} and Svatoslav {Staněk}",
title="Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions",
journal="Functional Differential Equations",
year="2007",
volume="14",
number="2/4",
pages="103--114",
issn="0793-1786"
}