Publication detail
Variational Approximation of Long-span Language Models for LVCSR
DEORAS, A. MIKOLOV, T. KOMBRINK, S. KARAFIÁT, M. KHUDANPUR, S.
Original Title
Variational Approximation of Long-span Language Models for LVCSR
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
We have presented experimental evidence that (n-gram) variational approximations of long-span LMs yield greater accuracy in LVCSR than standard n-gram models estimated from the same training text.
Keywords
Recurrent Neural Network, Language Model, Variational Inference
Authors
DEORAS, A.; MIKOLOV, T.; KOMBRINK, S.; KARAFIÁT, M.; KHUDANPUR, S.
RIV year
2011
Released
22. 5. 2011
Publisher
IEEE Signal Processing Society
Location
Praha
ISBN
978-1-4577-0537-3
Book
Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
Pages from
5532
Pages to
5535
Pages count
4
URL
BibTex
@inproceedings{BUT76377,
author="Anoop {Deoras} and Tomáš {Mikolov} and Stefan {Kombrink} and Martin {Karafiát} and Sanjeev {Khudanpur}",
title="Variational Approximation of Long-span Language Models for LVCSR",
booktitle="Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011",
year="2011",
pages="5532--5535",
publisher="IEEE Signal Processing Society",
address="Praha",
isbn="978-1-4577-0537-3",
url="http://www.fit.vutbr.cz/research/groups/speech/publi/2011/deoras_icassp2011_5532.pdf"
}