Detail publikace
Variational Approximation of Long-span Language Models for LVCSR
DEORAS, A. MIKOLOV, T. KOMBRINK, S. KARAFIÁT, M. KHUDANPUR, S.
Originální název
Variational Approximation of Long-span Language Models for LVCSR
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
We have presented experimental evidence that (n-gram) variational approximations of long-span LMs yield greater accuracy in LVCSR than standard n-gram models estimated from the same training text.
Klíčová slova
Recurrent Neural Network, Language Model, Variational Inference
Autoři
DEORAS, A.; MIKOLOV, T.; KOMBRINK, S.; KARAFIÁT, M.; KHUDANPUR, S.
Rok RIV
2011
Vydáno
22. 5. 2011
Nakladatel
IEEE Signal Processing Society
Místo
Praha
ISBN
978-1-4577-0537-3
Kniha
Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
Strany od
5532
Strany do
5535
Strany počet
4
URL
BibTex
@inproceedings{BUT76377,
author="Anoop {Deoras} and Tomáš {Mikolov} and Stefan {Kombrink} and Martin {Karafiát} and Sanjeev {Khudanpur}",
title="Variational Approximation of Long-span Language Models for LVCSR",
booktitle="Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011",
year="2011",
pages="5532--5535",
publisher="IEEE Signal Processing Society",
address="Praha",
isbn="978-1-4577-0537-3",
url="http://www.fit.vutbr.cz/research/groups/speech/publi/2011/deoras_icassp2011_5532.pdf"
}