Přístupnostní navigace
E-application
Search Search Close
Publication detail
GUAN, W. RADULESCU, V. WANG, D.
Original Title
Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
Type
journal article in Web of Science
Language
English
Original Abstract
We deal with the fractional Choquard equation where I-mu(x) is the Riesz potential, s is an element of (0, 1), 2s< N not equal 4s, 0 < mu < min{N, 4s} and 2* mu,s= 2N- mu/N-2s is the fractional critical Hardy-Littlewood-Sobolev exponent. By combining variational methods and the Brouwer degree theory, we investigate the existence and multiplicity of positive bound solutions to this equation when V(x) is a positive potential bounded from below. The results obtained in this paper extend and improve some recent works in the case where the coefficient V(x) vanishes at infinity.
Keywords
GROUND-STATESPOSITIVE SOLUTION;SEXISTENCE;UNIQUENESS
Authors
GUAN, W.; RADULESCU, V.; WANG, D.
Released
15. 5. 2023
Publisher
Academic Press Inc.
ISBN
1090-2732
Periodical
Journal of Differential Equations
Year of study
2023
Number
355
State
United States of America
Pages from
219
Pages to
247
Pages count
29
URL
https://www.sciencedirect.com/science/article/pii/S002203962300030X
BibTex
@article{BUT183551, author="Wen {Guan} and Vicentiu {Radulescu} and Da-Bin {Wang}", title="Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent", journal="Journal of Differential Equations", year="2023", volume="2023", number="355", pages="219--247", doi="10.1016/j.jde.2023.01.023", issn="1090-2732", url="https://www.sciencedirect.com/science/article/pii/S002203962300030X" }