Přístupnostní navigace
E-application
Search Search Close
Publication detail
NGUYEN, T. RADULESCU, V.
Original Title
Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth
Type
journal article in Web of Science
Language
English
Original Abstract
In this paper, we consider the Schrodinger equation involving the fractional $(p, p_1, . . . , p_m)$-Laplacian as follows $(-Delta)_p^s u +\sum_ {i=1}^m (-\Delta)_{p_i}^s u + V(\epsilon x)(|u|^{(N-2s)/2s} u + sum_{i=1}^m |u|^{p_i-2} u) = f (u) \in R^N$ where $\epsilon$ is a positive parameter, $N=ps, s \in (0,1), 2 \leq p < p_1 < \dots < p_m < +\infty, m \geq 1$. The nonlinear function f has the exponential growth and potential function V is continuous function satisfying some suitable conditions. Using the penalization method and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge, it is the first time that the above problem is studied.
Keywords
MOSER-TRUDINGER INEQUALITY;SOBOLEV-SLOBODECKIJ SPACES;POSITIVE SOLUTIONS;ELLIPTIC-EQUATIONS;EXISTENCE;DIMENSION;SYSTEMS;STATES
Authors
NGUYEN, T.; RADULESCU, V.
Released
25. 1. 2023
ISBN
0025-2611
Periodical
MANUSCRIPTA MATHEMATICA
Year of study
173
Number
1-2
State
Federal Republic of Germany
Pages from
499
Pages to
554
Pages count
56
URL
https://link.springer.com/article/10.1007/s00229-022-01450-7
BibTex
@article{BUT184005, author="Thin Van {Nguyen} and Vicentiu {Radulescu}", title="Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth", journal="MANUSCRIPTA MATHEMATICA", year="2023", volume="173", number="1-2", pages="499--554", doi="10.1007/s00229-022-01450-7", issn="0025-2611", url="https://link.springer.com/article/10.1007/s00229-022-01450-7" }