Course detail

Design of electronic devices

FEKT-CKEZAcad. year: 2011/2012

Design and properties of signal lines, supply lines and distribution frames - suppression of interference and ground loops.
Parasitic events and their suppression - coupling in input and output circuits, parasitic capacitances and inductances, thermoelectric voltage, overvoltage on inductive load, reflections on lines, crosstalk.Electric and magnetic field screening, equipotential guarding. Choice of components and application recommendation - discrete elements, operational amplifiers, comparators, electronic switches, A/D and D/A converters, sample-and-hold elements, digital circuits, microprocessors. Mechanics design: regulation, control and indication elements - lay-ou on the front panel, instrument housing design, heat removal, thermostatic elements. Printed circuits, wired printed circuits, connection of conductors and components. Safety requirements in instrument design. Methodology for the debugging of electronic device.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The student acquires concrete application knowledge of electronic instrument design, which is otherwise obtained only through long-term development practice. Emphasis is laid on understanding the physical essence of parasitic events so that their knowledge can be applied to other cases. He learns to foresee and anticipate the appearance of many problems arising in the development of new instruments in both the electrical and the mechanical parts of the design.

Prerequisites

Basic knowledge of electrical engineering theory is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.

Course curriculum

1. Design of signal transmission lines.
2. Power supply source desingn and power distribution.
3. Connection and distribution of ground potential.
4. Parasitic phenomena and their suppression.
5. Shielding.
6. Selection of components and application principles.
6.1 Passive elements.
6.2 Operational amplifiers.
6.3 Comparators.
6.4 Analog-to-digital and digital-to-analog converters.
6.5 TTL digital circuits.
6.6 CMOS digital circuits.
7. Mechanical design.
8. Safety requirements for the design.
9. Debugging of devices.

Work placements

Not applicable.

Aims

To be introduced to practical principles of designing electronic instruments and devices as regards both electrical and mechanical aspects. The subject is also suitable for other branches of BSc studies because it offers a close look at actual work of the designer of electronic instruments and devices.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ARCHAMBEAUTT, B.R.: PCB Design for Real-World EMI Control. Kluwer Academic Publishers, 2002
Buchanan J.E.: BiCMOS/CMOS system design. McGraw-Hill, New York 1998
FAIRCHILD: Analog - mixed signal, interface, logic, non-voltatile memory, power products. Fairchild Semiconductors, www.fairchildsemi.com
Ginsberg G. L.: Printed circuits design. McGraw-Hill, New York 1999
HALL, S.H.; HECK, H.L.: High-Speed Digital Designs. Wiley, 2009
LINEAR TECHNOLOGY: Linear Applications Handbook. Linear Technology, Milpitas 1999
NATIONAL SEMICONDUCTOR: National Analog and Interface Products Databook. National Semiconductor, Santa Clara 1999
NIKNEJAD, A.M.: Electromagnetics for High-Speed Analog and Digital Communication Circuits. Cambridge, 2007

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch BC-AMT , 2 year of study, summer semester, elective interdisciplinary
    branch BC-TLI , 3 year of study, summer semester, elective specialised
    branch BC-EST , 2 year of study, summer semester, elective interdisciplinary

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

Design of signal lines: symmetrical and non-symmetrical lines, properties of signal lines, execution of connections, printed circuits and their properties, optical lines
Supply sources: mains supply, mains switches, transformers, means of interference suppression (suppression capacitors, suppression chokes, suppression elements)
Supply voltage distribution: supply distribution in instrument housing and on printed circuit boards, distribution in the ground, galvanic separation of systems (impulse tranformers, optrons)
Parasitic events and their suppression: coupling in input and outtput circuits, coupling on line resistances, parasitic capacitances and inductances, transient resistances, thermoelectric voltage, overvoltage on inductive load
Signal transmission over long lines: reflections in the lines, crosstalk, charging and discharging the lines
Electric and magnetic field screening: electric field screening of systems and lines, magnetic field screening of systems and lines
Equipotential guarding: insulation ring guarding, teflon support point, examples of active insulation of critical points
Selection of discrete components and application recommendation: resistors, potentiometers and potentiometric trimmers, capacotors and capacitive trimmers, inductors, diodes, transistors (bipolar, unipolar; power, HF)
Application recommendation for analog and digital integrated circuits: operational and transimpedance amplifiers, analog multiplexersand demultiplexers, comparators and timers, D/A and A/D converters, digital integrated circuits, microprocessors
Mechanics design: regulation and control elements and their lay-out, communication and indication elements, lay-out of regulation and communication elements on the front panel of the instrument, graphic and technical aspects of the mechanical part of design, design of instrument housing
Mechanical resistance of devices: resistance to shocks, vibration, moisture, water; abstraction of heat from the device, cooling elements, temperature stabilization (thermostatic control)
Connection of conductors and components: technology of printed circuit production, soldered connections, wire-wrap connections, cut-in connections; technology of surface assembly
Safety requirements: fundamental requirements, types of instrument classes, work environment, danger-to-touch protection, insulation requirements, surface paths and distances, movable lead-in wires

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Basic characteristics of the Integra Station and Board StationMentor Graphics CAM systems, their structure and control. Setting up the directory and paths, production of projects, relation to other modules, work in the network
DesignArchitect module: principles of drawing schematic diagrams, levels of drawing, method of drawing schematic diagrams, checking for design correctness, content of libraries
Principles of board design, assembly technologies used, effect of parasitic events on the board, supply distribution and blocking, thermal analysis
Librarian, Package, and Layout modules: defining the geometry elements, defining the board and package, board design, autorouters, adjustment possibilities
Generating output data and processing them - the Fablink module, data export and import
Connecting the system to the respective technological facilities
Working on individual project
Working on individual project
Working on individual project
Working on individual project
Working on individual project
Working on individual project
Working on individual project