Course detail

Measurement of physical quantities

FEKT-KMFVAcad. year: 2012/2013

The course presents basic sensor principles, their parameters and construction. It deals with instrumentation, non-electrical quantities measurements concepts and procedures. It also presents tthe differences between conventional electrical measurements of the electrical quantities and non-electrical quantities on the real industry systems. Also the optical sensors, optical fibre sensors, data collecting and acquisition processes are presented.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will be able to:
- Get a basic, in good engineering practice to use the knowledge and skills of sensor technology and sensors
- Discuss basic design concept of the measuring chain
- To determine the optimal method of measurement,
- Define the measured data and
- Describe the process and evaluate the measured results
- To measure basic physical quantities and
- More.
Course graduate should get basic knowledges and facilities in sensor field and the most commonly measured non-electrical quantities, include measurement concept design and results process and evaluaiton.

Prerequisites

Knowledge is required in the Bachelor's degree level (BMFV) and valid examination for qualifying workers for an independent activity (within the meaning of § 6 of the Decree).

Graduates who writes the course should be chopen:
- Describe different types (types of) sensors,
- Explain the modulation used in sensors,
- Describe and list the analog and digital sensors and measurement methods,
- Explain interference phenomena and the resulting possibilities
- Discuss and explain various types of interferometers
- Define and design the basic blocks measuring systems,
- Can measure basic physical quantities
- And discuss application possibilities, if necessary. more.

Those interested in the course should be equipped with the knowledge of basic physical and electrical principles.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

The test focuses on the verification of knowledge (orientation) information literacy course. He has written a mandatory laboratory (numeric) and non-verbal oral part.
Evaluation laboratory 0 - 40
Written part of exam 20 - 50
Oral exams 0 - 10

Course curriculum

Introduction, basic terms, sensor and instrumentation concepts, sensor construction.
Position and dimensions measurements.
Velocity and acceleration measurements.
Forces, pressures and weight measurements.
Deformations and force moment measurements.
Vibration measurements.
Temperature, heat and thermal flow measurements.
Flow measurements.
Emission measurements (light, infrared, UV).
Ionizating emission measurements.
Material composition and humidity measurements.
Protection technics measurements (monitoring).
Measurement system for data collecting, acquisition and presentation, local networks.

Work placements

Not applicable.

Aims

The goal of the course is to introduce students to the basic modern solutions and methods of physical quantities measurements. These represent more than 95 % of all measured quantities in the laboratory and industrial areas. The course should also present sensor and physical quantities measurements importance in technical and non-technical fiels, science and generally in information technologies.

Specification of controlled education, way of implementation and compensation for absences

Laboratory is compulsory, properly excused absences laboratory exercises (maximum of two) can be arranged with the teacher substitute (usually in the credit week).
Specification of controlled education, way of implementation and usually provides annual public notice.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

RIPKA, P. – ĎAĎO, S. – KREIDL, M. – NOVÁK, J.: Senzory a převodníky. Vydavatelství ČVUT, Praha, 2005, 135 stran (CS)

Recommended reading

BEJČEK,L.: Měření neelektrických veličin. Skriptum, VUT Brno, 1988 (CS)
ĎAĎO,S.-KREIDL,M.: Senzory a měřicí obvody. Vydavatelství ČVUT, Praha, 1996 (CS)
NORTON,H.N.: Handbook of Transducers. Prentice Hall, 1989 (EN)
ZEHNULA, K.: Snímače neelektrických veličin, SNTL Praha, 1986 (CS)

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch BK-AMT , 2 year of study, summer semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Introduction, basic terms, sensor and instrumentation concepts, sensor construction.
Position and dimensions measurements.
Velocity and acceleration measurements.
Forces, pressures and weight measurements.
Deformations and force moment measurements.
Vibration measurements.
Temperature, heat and thermal flow measurements.
Flow measurements.
Emission measurements (light, infrared, UV).
Ionizating emission measurements.
Material composition and humidity measurements.
Protection technics measurements (monitoring).
Measurement system for data collecting, acquisition and presentation, local networks.

Laboratory exercise

39 hod., compulsory

Teacher / Lecturer

Syllabus

Introduction (organisation, safety and next)
Position and dimensions measurements (indductance, capacitance and photoelectric sensors, fibre glass and next)
Velocity and acceleration measurements (linear and angle velocity, contact and non-contact methods, optical methods).
Forces, pressure and weight measurements (metal and semiconductor strain gauges).
Vibration measurements (piezoelectric sensors, multianalyzer PULSE).
Contact temperature measurements (metal, semiconductor and intelligent sensors) and non-contact temperature measurements (radiation pyrometers).
Flow measurements (special flow measurement laboratory).
Emission measurements (UV, VIS, IR).
Material composition measurements (CO2, pH measurements and next)
Basic fibre glass sensors and their applications.
Free theme.
Inclusion