Course detail
Acoustics and Audio Systems
FEKT-PAZSAcad. year: 2016/2017
The course Acoustics and Audio Systems is focused to deepen the theoretical knowledge in the field of acoustics and electro-acoustics and teaching of analysis and synthesis of 2D and 3D sound fields using physical and perceptual principles and compression and transmission of multi-channel audio signals. The course also covers the basics of experimental psycho-acoustics, room acoustics and sound reinforcement issues.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- describe the frequency and directional characteristics of ideal sound sources,
- explain the principles of spatial and directional hearing,
- employ devices for multi-channel capture and reproduction of sound,
- describe methods of propagation of sound in an enclosed space and describe methods of simulation of the propagation,
- enumerate and explain the principles of sound field analysis methods based on perceptual and physical principles,
- explain the principle of sound field synthesis using WFS, ambisonic and VBAP,
- design a listening test for assessing the quality of audio devices and algorithms for processing and compression of audio signals
- explain the principles of lossy compression of audio signals including compression of spatial sound formats,
- explain the principles of line sources and principle of phasing sound systems and design sound reinforcement for specific rooms.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Characteristics of ideal sound sources.
3. Analysis and synthesis of 2D and 3D sound fields - physical principles 1: beamforming, NAH.
4. Analysis and synthesis of 2D and 3D sound field - physical principles 2: wavefield synthesis.
5. Metatheory spatial hearing, spherical harmonic decomposition, formats for tranfer of spatial information (A-format, B-format, UHJ).
6. Analysis and synthesis of 2D and 3D sound fields - perceptual principles 1: ambisonic.
7. Analysis and synthesis of 2D and 3D sound fields - perceptual principles 2:, SIRR, Dirac.
8. Basics of experimental acoustics, standards, evaluation methods.
9. Lossy compression of audio signals 1: principles MPEG Layer 1,2,3 standards.
10. Lossy compression of audio signals 2: SBR, spatial information coding, MPEG 2 BC, AAC, AC3, ATRAC, MPEG Surround standards.
11. Room acoustics, method of mirror sources, raytraycing.
12. Acoustic materials, designing sound studios in terms of acoustics, standards.
13. Sound reinforcement, line sources, phasing of sound systems.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Gardner, William G.: 3-D Audio Using Loudspeakers. 1998. ISBN 0-7923-8156-4
Spanias, Andreas: Audio Signal Processing and Coding. 2007. ISBN 978-0-471-79147-8
Williams, Earl G.: Fourier Acoustics : Sound Radiation and Nearfield Acoustical Holography . 1999. ISBN 0-12-753960-3
Zölzer, Udo.: DAFX: Digital Audio Effects. 2011. ISBN 978-0-470-66599-2
Recommended reading
Classification of course in study plans