Course detail
Matrices and Tensors Calculus
FEKT-MMATAcad. year: 2017/2018
Matrices as algebraic structure. Matrix operations. Determinant. Matrices in systems of linear algebraic equations. Vector space, its basis and dimension. Coordinates and their transformation. Sum and intersection of vector spaces. Linear mapping of vector spaces and its matrix representation. Inner (dot) product, orthogonal projection and the best approximation element. Eigenvalues and eigenvectors. Spectral properties of (especially Hermitian) matrices. Bilinear and quadratic forms. Definitness of quadratic forms. Linear forms and tensors. Verious types of coordinates. Covariant, contravariant and mixed tensors. Tensor operations. Tensor and wedge products.Antilinear forms. Matrix formulation of quantum. Dirac notation. Bra and Ket vectors. Wave packets as vectors. Hermitian linear operator. Schrodinger equation. Uncertainty Principle and Heisenberg relation. Multi-qubit systems and quantum entaglement. Einstein-Podolsky-Rosen experiment-paradox. Quantum calculations. Density matrix. Quantum teleportation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Matrices in systems of linear algebraic equations.
3. Vector space, its basis and dimension. Coordinates and their transformation. Sum and intersection of vector spaces.
4. Linear mapping of vector spaces and its matrix representation.
5. Inner (dot) product, orthogonal projection and the best approximation element.
6. Eigenvalues and eigenvectors. Spectral properties of (especially Hermitian) matrices.
7. Bilinear and quadratic forms. Definitness of quadratic forms.
8. Linear forms and tensors. Verious types of coordinates. Covariant, contravariant and mixed tensors.
9. Tensor operations. Tensor and wedge products.Antilinear forms.
10. Matrix formulation of quantum. Dirac notation. Bra and Ket vectors. Wave packets as vectors.
11. Hermitian linear operator. Schrodinger equation. Uncertainty Principle and Heisenberg relation.
12. Multi-qubit systems and quantum entaglement. Einstein-Podolsky-Rosen experiment-paradox.
13. Quantum calculations. Density matrix. Quantum teleportation.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Boček L.: Tenzorový počet, SNTL Praha 1976.
Demlová, M., Nagy, J., Algebra, STNL, Praha 1982.
Havel V., Holenda J.: Lineární algebra, SNTL, Praha 1984.
Hrůza B., Mrhačová H.: Cvičení z algebry a geometrie. Ediční stř. VUT 1993, skriptum
Kolman, B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.
Kolman, B., Introductory Linear Algebra, Macmillan Publ. Comp., New York 1991.
Krupka D., Musilová J., Lineární a multilineární algebra, Skriptum Př. f. MU, SPN, Praha, 1989.
Schmidtmayer J.: Maticový počet a jeho použití, SNTL, Praha, 1967.
Recommended reading
Classification of course in study plans
- Programme EEKR-M Master's
branch M-EVM , 1 year of study, summer semester, theoretical subject
branch M-KAM , 1 year of study, summer semester, theoretical subject
branch M-EEN , 1 year of study, summer semester, theoretical subject
branch M-EST , 1 year of study, summer semester, theoretical subject
branch M-SVE , 1 year of study, summer semester, theoretical subject
branch M-TIT , 1 year of study, summer semester, theoretical subject - Programme AUDIO-P Master's
branch P-AUD , 1 year of study, summer semester, elective interdisciplinary
branch P-AUD , 2 year of study, summer semester, elective interdisciplinary - Programme IT-MSC-2 Master's
branch MMI , 0 year of study, summer semester, elective
branch MBI , 0 year of study, summer semester, elective
branch MSK , 0 year of study, summer semester, elective
branch MMM , 0 year of study, summer semester, elective
branch MBS , 0 year of study, summer semester, elective
branch MPV , 0 year of study, summer semester, elective
branch MIS , 0 year of study, summer semester, elective
branch MIN , 0 year of study, summer semester, elective
branch MGM , 0 year of study, summer semester, elective - Programme EEKR-CZV lifelong learning
branch EE-FLE , 1 year of study, summer semester, theoretical subject
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Determinant of quadratic complex matrix.
Operations with matrices. Special types of matrices. Inverse matrix.
Matrix solutions of linear algebraic equations.
Linear, bilinear and quadratic forms. Definite of quadratics forms.
Spectral attributes of matrices.
Linear space, dimension.
Linear transform of coordinates of vector.
Covariant and contravariant coordinates of vector.
Definition of tensor.
Covariant, contravariant and mixed tensor.
Operation with tensors.
Symmetry and antisymmetry of tensors of second order.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Spectral properties of matrices.
Operations with tensors.