Course detail
Numerical Methods I
FSI-SN1Acad. year: 2017/2018
The course represents the first systematic explanation of selected basic methods of numerical mathematics. Passing this course, students obtain basic knowledge necessary for further study of more specialised areas of numerical mathematics.
Main topics: Direct and iterative methods for linear systems. Interpolation. Least squares method. Numerical differentiation and integration. Nonlinear equations. The students will demonstrate the acquinted knowledge by elaborating at least two semester assignements.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
FORM OF EXAMINATIONS: The exam is oral. As a result of the exam students will obtain 0--70 points.
FINAL ASSESSMENT: The final point course classicifation is the sum of points obtained from both the practisals (0--30) and the exam (0--70).
FINAL COURSE CLASSIFICATION: A (excellent): 100--90, B (very good): 89--80, C (good): 79--70, D (satisfactory): 69--60, E (sufficient): 59--50, F (failed): 49--0.
If we measure the exam success in percentage points, then the classification grades are: A (excellent): 100--90, B (very good): 89--80, C (good): 79--70, D (satisfactory): 69--60, E (sufficient): 59--50, F (failed): 49--0.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
C.B. Moler: Numerical Computing with Matlab, Siam, Philadelphia, 2004.
G. Dahlquist, A. Bjork: Numerical Methods, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1974.
J.H. Mathews, K.D. Fink: Numerical Methods Using MATLAB, Pearson Prentice Hall, New Jersey, 2004.
M.T. Heath: Scientific Computing. An Introductory Survey. Second edition. McGraw-Hill, New York, 2002.
Recommended reading
L. Čermák: Vybrané statě z numerických metod. [on-line], available from: http://mathonline.fme.vutbr.cz/Numericke-metody-I/sc-1150-sr-1-a-141/default.aspx.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Gaussian elimination method. LU decomposition. Pivoting.
3. Solution of special linear systems. Stability and conditioning. Error analysis.
4. Classical iterative methods: Jacobi, Gauss-Seidel, SOR, SSOR.
5. Generalized minimum rezidual method, conjugate gradient method.
6. Lagrange, Newton and Hermite interpolation polynomial. Piecewise linear and piecewise cubic Hermite interpolation.
7. Cubic interpolating spline. Least squares method: data fitting, solving overdetermined systems.
8. QR decomposition and singular value decomposition in the least squares method.
9. Orthogonalization methods (Householder transformation, Givens rotations, Gram-Schmidt orthogonalization)
10. Numerical differentiation: basic formulas, Richardson extrapolation.
11. Numerical integration: Newton-Cotes formulas, Romberg's method, Gaussian formulas, adaptive integration.
12. Solving nonlinear equations in one dimension: bisection method, Newton's method, secant method, false position method, inverse quadratic interpolation, fixed point iteration.
13. Solving nonlinear systems: Newton's method, fixed point iteration.
Computer-assisted exercise
Teacher / Lecturer
Syllabus