Course detail
Mathematics I
FSI-1M-AAcad. year: 2017/2018
Basic concepts of the set theory and mathematical logic.
Linear algebra: matrices, determinants, systems of linear equations.
Vector calculus and analytic geometry.
Differential calculus of functions of one variable: basic elementary functions, limits, derivative and its applications.
Integral calculus of functions of one variable: primitive function, proper integral and its applications.
Language of instruction
Number of ECTS credits
Mode of study
Department
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The student can obtain at most 25 points alltogether within the seminars. Condition for the course-unit credit: to obtain at least 6 points from each written test. Students, who do not fulfil conditions for the course-unit credit, can repeat the written test during first two weeks of examination time.
FORM OF EXAMINATIONS:
The exam has an obligatory written (and possible oral) part.
In a 120-minute written test, students have to solve the following four problems:
Problem 1: Functions and their properties, equations, inequalities (at most 10 points)
Problem 2: In linear algebra, analytic geometry (at most 20 points)
Problem 3: In differential calculus (at most 25 points)
Problem 4: In integral calculus (at most 20 points)
Above problems can also contain a theoretical question.
RULES FOR CLASSIFICATION
1. Results from seminars (at most 25 points)
2. Results from the written examination (at most 75 points)
Final classification:
0-49 points: F
50-59 points: E
60-69 points: D
70-79 points: C
80-89 points: B
90-100 points: A
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL, 1988)
Satunino, L.S., Hille, E., Etgen, J.G.: Calculus: One and Several Variables, Wiley 2002 (EN)
Sneall D.B., Hosack J.M.: Calculus, An Integrated Approach (EN)
Thomas G. B.: Calculus (Addison Wesley, 2003) (EN)
Thomas G.B., Finney R.L.: Calculus and Analytic Geometry (7th edition) (EN)
Recommended reading
Eliaš J., Horváth J., Kajan J.: Zbierka úloh z vyššej matematiky I, II, III, IV (Alfa Bratislava, 1985)
Mezník I. - Karásek J. - Miklíček J.: Matematika I pro strojní fakulty (SNTL 1992)
Nedoma J.: Matematika I. Část třetí, Integrální počet funkcí jedné proměnné (skriptum VUT)
Nedoma J.: Matematika I. Část druhá. Diferenciální a integrální počet funkcí jedné proměnné (skriptum VUT)
Nedoma J.: Matematika I., Část první. Algebra a geometrie (skriptum VUT)
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL, 1988)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Week 2: Matrices and determinants (determinants and their properties, regular and singular matrices, inverse to a matrix, calculating the inverse to a matrix using determinants), systems of linear algebraic equations (Cramer's rule, Gauss elimination method).
Week 3: More about systems of linear algebraic equations (Frobenius theorem, calculating the inverse to a matrix using the elimination method), vector calculus (operations with vectors, scalar (dot) product, vector (cross) product, scalar triple (box) product).
Week 4: Analytic geometry in 3D (problems involving straight lines and planes, classification of conics and quadratic surfaces), the notion of a function (domain and range, bounded functions, even and odd functions, periodic functions, monotonous functions, composite functions, one-to-one functions, inverse functions).
Week 5: Basic elementary functions (exponential, logarithm, general power, trigonometric functions and cyclometric (inverse to trigonometric functions), polynomials (root of a polynomial, the fundamental theorem of algebra, multiplicity of a root, product breakdown of a polynomial), introducing the notion of a rational function.
Week 6: Sequences and their limits, limit of a function, continuous functions.
Week 7: Derivative of a function (basic problem of differential calculus, notion of derivative, calculating derivatives, geometric applications of derivatives), calculating the limit of a function using L' Hospital rule.
Week 8: Monotonous functions, maxima and minima of functions, points of inflection, convex and concave functions, asymptotes, sketching the graph of a function.
Week 9: Differential of a function, Taylor polynomial, parametric and polar definitions of curves and functions (parametric definition of a derivative, transforming parametric definitions into polar ones and vice versa).
Week 10: Primitive function (antiderivative) (definition, properties and basic formulas), integrating by parts, method of substitution.
Week 11: Integrating rational functions (no complex roots in the denominator), calculating a primitive function by the method of substitution in some of the elementary functions.
Week 12: Riemann integral (basic problem of integral calculus, definition and properties of the Riemann integral), calculating the Riemann integral (Newton' s formula).
Week 13: Applications of the definite integral (surface area of a plane figure, length of a curve, volume and lateral surface area of a rotational body), improper integral.
Exercise
Teacher / Lecturer
Syllabus
Computer-assisted exercise
Teacher / Lecturer
Syllabus