Course detail
Machine Design
FSI-2K-AAcad. year: 2017/2018
The aim of the course is to provide requisites of engineering (especially drawing) documentation and its requirements in terms of batch production, i. e. engineering drawings of welded, cast, forged and other parts. Emphasis is being placed on optimizing of the functional and technological dimensioning in the development of a complete engineering drawing documentation of an assembly unit (assembly drawing, part drawings and piece list). Attention is devoted to the calculations of tolerated dimensions and current trends in the creation of documentation. They are completed basic information about selected types of machine parts.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
SIMMONS, Colin H.; MAGUIRE, Dennis E.; PHELPS, Neil. Manual of engineering drawing: technical product specification and documentation to British and international standards. Butterworth-Heinemann, 2012. ISBN 978-0-08-096652-6. (EN)
Standards ISO, EN, ČSN
SVOBODA, Pavel a BRANDEJS, Jan. Výběry z norem pro konstrukční cvičení. Vyd. 6. Brno: Akademické nakladatelství CERM, 2019, 238 s. ISBN 978-80- 7623-010-1. (CS)
Recommended reading
JENSEN, Cecil Howard, Jay D HELSEL a Dennis R SHORT. Engineering drawing & design. 7th ed. Boston: McGraw-Hill, 2008, 1 v. ISBN 978-0-07-352151-0.
Classification of course in study plans
Type of course unit
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Drawing documentation of forged parts. Specification of functional requirements. Consultation P1.
3. Tolerances and deviations in dimension chains - method of full interchangeability – examples.
Entering the workloads - dimensional circuits. Consultation P1.
4. Dimension and precision of gears. Assignment of 2nd program (P2) - gears. Consultation.
5. Delivery of P1. Tolerances and deviations in dimensional chains - compensation method – example. Introduction to documentation of formed parts. Consultation.
6. Drawing documentation of the welded parts. Drawing of weldment for welding and machining, drawings of weldment parts, parts list. Assignment of P3 - weldment. Consultation.
7. Knowledge test 1. Consultation.
8. Knowledge test 1 evaluation. Consultation of P2 and P3.
9. Delivery of P2. Drawing documentation of flat formed part – examples. Consultation P3.
10. Assembly drawing, parts list, technical report, final thesis - basic rules. Delivery of P3. Evaluation of P2.
11. Knowledge test 2 (elaboration of a drawing of machine part during the lesson).
12. Knowledge test 2 and P3 evaluation. Corrections of programs.
13. Check of programs and compositions completeness. Graded course-unit credits.
Lecture
Teacher / Lecturer
Syllabus
2. Requirements for the drawing of casting, drawing of manufacturing process, technological aspects of design.
3. Tolerances and deviations in dimensional chains - full interchangeability method and statistical method.
4. Dimensioning and precision of gears and sprockets. Pulleys.
5. Tolerances and deviations in dimensional chains - group interchangeability method, compensation method and ways of dimension compensation.
6. Drawings of the weldment elements. Constructional and technological rules.
7. Drawing documentation of forged pieces, technological aspects of forging design.
8. Drawing documentation of flat formed parts. Soldered, glued and riveted joints.
9. Algorithm of design process. General requirements for the technological aspects of construction.
10. Modern trends in design documentation and documentation without drawings. 3D printing.
11. Selected chapters from area of machine elements. Drives and springs in terms of documentation.
12. Mechanical couplings - overview and basic rules for their use.
13. Basic mechanisms - overview and documentation.