Course detail
Strength of Materials I
FSI-4PPAcad. year: 2017/2018
Basic concepts and problems of strength analysis. Basic mechanical properties of material. General theorems of linear elasticity. Definition, classification and assumptions of rod as the simplest model body. Rod under simple stress - tension / compression, torsion, and bending. Strain at a body point. Boundary states of elasticity and brittle strength. Safety conditions. Rods under combined stresses. Supporting stability of rods.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Statics - conditions of static equilibrium and equivalence, the release of the body, the assessment of static certainty, resulting internal effects.
Mathematics - vectors and matrices, differentials and integrals, solutions to differential equations. Knowledge of the software Maple.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Final examination: Written part of the examination plays a decisive role, where the maximum of 80 ECTS points can be reached. Solution of several computational problems is demanded. The problems come from typical profile areas of given subject and supplied by a theoretical question, proof, etc. The lecturer will specify exact demands like the number and types problems during the semester preceding the examination.
Final evaluation of the course is obtained as the sum of ECTS points gained in seminars and at the examination. To pass the course, at least 50 points must be reached.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Hoschl, C.: Pružnost a pevnost ve strojírenství, SNTL, Praha, 1971
Pestel, E., Wittenburg, J.: Technische Mechanik, Band 2: Festigkeitslehre, B I, Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zűrich, 1992
Recommended reading
Classification of course in study plans
- Programme B3A-P Bachelor's
branch B-MTI , 3 year of study, winter semester, compulsory
branch B-PDS , 2 year of study, winter semester, compulsory - Programme B3S-P Bachelor's
branch B-KSB , 2 year of study, winter semester, compulsory
branch B-EPP , 2 year of study, winter semester, compulsory
branch B-AIŘ , 2 year of study, winter semester, compulsory
branch B-SSZ , 2 year of study, winter semester, compulsory
branch B-STG , 2 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Definition of the course content. Basic concepts - deformation, stress, strain, boundary conditions, and safety. Mechanical properties of materials and their computational models.
2. Behaviour of linear elastic body. Definition of the linear solids and structures. Basic theorems of linear solids and structures – theorem of reciprocity of work, deformation work of force and force systém, Castigliano's theorem. Saint Venant principle.
3. Rod in strength analysis - definition, classification. Geometric characteristics of the cross section. Quadratic moments of cross sections, transformation to displaced and turned axes. The main and the main central square moments.
4. Simple tension and compression. Strain, stress, strain energy. Effects of deflections on stress and strain. Safety check.
5. Statically uncertain rod placement. Rod systems, systems of rods and non-rod bodies. External and internal static uncertainty.
6. Simple bending. Strain, stress, strain energy. Effects of deflections on stress and strain. Shear stress caused by shear force. Safety check.
7. Statically uncertain cases of rod placement. Shear stress in thin-walled profiles, shear centre.
8. Weakly and strongly curved rods, broken rods (frames).
9. Simple torsion. Stress, strain, strain energy. Effects of deflections on stress and strain. Safety check. Statically uncertain rod placement.
10. Stress at a body point, the main stress. Views of stress in the Mohr plane. Special cases of stress, plane stress.
11. Conditions of boundary states of elasticity and brittle strength during monotonous loading. Safety, reduced stress. Behaviour of bodies under cyclic loading, basic fatigue characteristics of the material.
12. Rods under combined stress. A list of problems to be solved by analytical, numerical and experimental methods.
13. Supporting stability of rods. Effects of deflections on critical force. Boundary states of real material rod under compression. Safety.
Exercise
Teacher / Lecturer
Syllabus
2. Resulting internal effects in a curved rod. (3rd week)
3. Tension and pressure of rod, stress, strain and deformation. Statically certain tasks. (5th week)
4. Tension and pressure of rod - systems of bodies. (7th week)
5. Bending. Stress, strain and deformation in statically uncertain rod. (9th week)
6. Torsion. Stress, strain and deformation in statically certain and uncertain tasks. (11th week)
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Quadratic moments of the cross section. Mohr diagram. (4th week)
3. Tension and pressure of rod, stress, strain and deformation. Statically uncertain tasks. (6th week)
4. Bending. Stress, strain and deformation in statically certain rod. (8th week)
5. Curved and wrapped rods. Closed rods (frames). Use of symmetry and antimetry. (10th week)
6. Combined stress. (12th week)
7. Supporting stability of rods. Safety for real material rods under compressive stress. (13th week)