Course detail

Introduction to Cybernetics

FEKT-BPC-UKBAcad. year: 2018/2019

Introduction to the technical cybernetics
The physical signals – kinds and ways of description
Signals – frequency, amplitude, phase, power and energy of signals
Definition of the system, the system kinds and their properties (linearity, time-invariance, causality, etc.)
The static and the dynamic systems – system state, energy accumulators and system order
Systems – inputs/outputs, the ways of the systems description
Examples of basic systems, the analogy between the physical systems and RLC systems
The system structures (serial, parallel, antiparallel), explanation of positive/negative feedback
Stability of the systems, feedback use and the basic principle of automatic control, the main kinds of controllers (regulators)
The Laplace transform principle , solving the differential equations
The Z-transform principle, solving the difference equations

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

Absolvent is able to:
- describe and to explain the basic pronciples of technical cybernetics,
- define a signal and to destinguish the basic types of physical signals,
- describe the basic signals by mathematic equations,
- describe and apply the Laplace transform and Z-transform ,
- define a system and its basic properties (linearity, time-invariance, causality, etc.),
- distinguish between different kinds of systems and their structures,
- explain the system stability, system order and feedback,
- describe the basic principle of automatic control and enumerate basic types of controllers (regulators).

Prerequisites

The basic knowledge of mathematics, physics and electrical engineering at the level of the 1st year Bachelor studies.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Techning methods include lectures and final test.

Assesment methods and criteria linked to learning outcomes

The final test – 100 points. The minimum 50 points is required for credit.

Course curriculum

1. Introduction to the technical cybernetics.
2. Signals – definition, types, properties. A/D and D/A conversion.
3. Mathematical description of the basic signals. The harmonic signals - frequency, amplitude and phase. The complex numbers, their relation to the signals. The complex exponential signal and its properties.
4. Meaning of differentiation and integration in view of signals. Introduction to the modelling.
5. Systems - definition, types and their properties (linearity, time-invariance, causality, etc.).
6. Static and dynamic systems. System state, system energy, accumulators of energy and system order.
7. Examples of basic systems, analogy with the RLC systems. Description of systems.
8. Control - definition, types, properties. Examples of control.
9. Basic types of controlled systems (processess), their properties and examples.
10. Feedback and the basic principle of automatic control, the main kinds of controllers (regulators).
11. The Laplace transform and the Z transform - principle, properties, solving the differential (difference) equations.
12. Summary. Example of a control implementation.
13. Final test.

Work placements

Not applicable.

Aims

The goal of this course is to provide an overview and explanation of the basic concepts and principles used in automation and cybernetics. Other goal is to demonstrate on the practical examples description of systems and signals in the time domain and frequency domain, briefly introduce to Laplace and Z transform and to prepare the students for following course Signals and Systems. Furthermore, the course also aims showing and explanation of the relationships between the signals/systems and the knowledge obtained in other courses.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme BPC-AMT Bachelor's 1 year of study, summer semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Úvod do technické kybernetiky.
2. Pojem „signál“ – definice, druhy fyzikálních signálů a jejich vlastnosti, A/D a D/A převod.
3. Matematický popis základních druhů signálů. Harmonické signály – frekvence, amplituda a fáze. Počítání s komplexními čísly – převody mezi tvary, Eulerovy vztahy, pojmy „amplituda“ a „fáze“ komplexního čísla. Komplexní exponenciální signál a jeho vlastnosti.
4. Význam derivace a integrace z pohledu signálů. Derivace a integrace základních signálů. Signálové toky a základy modelování.
5. Pojem „systém“ – definice, druhy systémů a jejich vlastnosti (linearita, časová invariance, kauzalita, apod.).
6. Statické a dynamické systémy. Stav systému, energie systému, akumulátory energie a řád systému.
7. Příklady a ukázka jednoduchých systémů, analogie s RLC systémy. Způsoby popisu dynamických systémů (vnější/vnitřní).
8. Pojem „řízení“ – definice, druhy řízení, řízení z pohledu technické kybernetiky, příklady řízení.
9. Základní typy řízených soustav (procesů) a jejich vlastnosti, příklady reálných soustav.
10. Využití zpětné vazby a princip regulace. Základní typy regulátorů (PID, on-off, a další) a jejich použití.
11. Laplaceova a Z transformace – základní princip a vlastnosti, řešení diferenciálních (diferenčních) rovnic.
12. Shrnutí a opakování učiva, ukázky reálné implementace řízení.
13. Závěrečný test.