Course detail
New Circuit Principles for Integrated System Design
FEKT-MOPIAcad. year: 2018/2019
1- Trends in low-voltage low-power analog circuit design.
2- MOS-resistor based on master-slave principle.
3- Bulk-driven MOS transistor, advantages, disadvantages and applications.
4- Floating-gate MOS transistor, advantages, disadvantages and applications.
5- Quasi-floating-gate MOS transistor, advantages, disadvantages and applications.
6- Higher order devices, memristors, applications.
7- Differential difference amplifier DDA, principle and applications.
8- Digitally programmable transconductors, principle and applications.
9- Conveyors, principle and applications.
10- Diode-less rectifiers, principle of winner-take-all circuits, advantages and applications
11- Analog circuit design for biological signal processing.
Language of instruction
Number of ECTS credits
Mode of study
Department
Learning outcomes of the course unit
Student will gain knowledge about the latest perspective trends in integrated circuits technique which is in the foreground of interest in research and applications. New circuit principles give a possibility to obtain better parameters of ICs by a circuit solution in the given technology.
The student is able to:
- describe the basic steps in the design process of integrated circuit,
- describe the basic properties of bulk-driven MOSFET's and the way they affect the parameters of amplifiers,
- describe the basic properties of floating-gate MOSFET's and the way they affect the parameters of amplifiers,
- describe the basic properties of quasi-floating-gate MOSFET's and the way they affect the parameters of amplifiers,
- design and verify basic parameters of the structure of the OTA, OP-AMP and DDA,
- draw schematics of basic amplifiers employing operational amplifiers and to explain their operation,
- discuss advantages and drawbacks of modern active elements such as OTA, OP-AMP, DDA and CCII,
- define and explain digitally controlled analog circuits,
- explain the methods of diode-less rectifiers and the principle of winner-take-all circuits,
- describe the basic properties of analog circuit design for biological signal processing.
Prerequisites
- Knowledge of work with the PSpice programme for analysis of electronic circuits.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Up to 70 points for exam.
Course curriculum
2- MOS-resistor based on master-slave principle.
3- Bulk-driven MOS transistor, advantages, disadvantages and applications.
4- Floating-gate MOS transistor, advantages, disadvantages and applications.
5- Quasi-floating-gate MOS transistor, advantages, disadvantages and applications.
6- Higher order devices, memristors, applications.
7- Differential difference amplifier DDA, principle and applications.
8- Digitally programmable transconductors, principle and applications.
9- Conveyors, principle and applications.
10- Diode-less rectifiers, principle of winner-take-all circuits, advantages and applications
11- Analog circuit design for biological signal processing.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MUSIL, V. a kol.: Nové obvodové principy pro návrh integrovaných systémů. Nanoelektronika. Prezentace projektu KISP. Brno 2015 (CS)
MUSIL, V. a kol.: Nové obvodové principy pro návrh integrovaných systémů. Obvody v proudovém módu - případová studie. Elektronický text projektu KISP. Brno 2014 (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Gyrators, conveyors, mutators, affinors.
Current-mode circuits.
Special types of current sources.
Controlled sources.
Current operational amplifiers.
Translinear theorem and circuits.
Transimmitance amplifiers.
TEC a COMFET structures.
Principles for BiCMOS, RFCMOS and SiGe circuits.
Switched capacitors and filters.
Switched-current circuits.
Systolic principles.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Special current sources
OTA-C integrator
Current operational amplifier
Translinear two-port
TEC and COMFET obvody