Course detail
Tomographic Imaging Systems
FEKT-MTZSAcad. year: 2018/2019
The physical and technical aspects of medical and ecological non-direct syntheses imaging systems technology: computed x-ray tomography (X-ray CT), magnetic resonance imaging systems (MRI), single photon (SPECT) and positron (double-photon PET) emission computed tomography imaging systems, ultrasound imaging systems (UZV ZS). The systems approach to imaging systems construction with respect to information transport from surrounding environment to human with the aim surrounding and object diagnostic.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Drastich,A.:Netelevizní zobrazovací systémy. Skriptum FEI VUT v Brně. 2001 (CS)
Drastich,A.:Tomografické zobrazovací systémy. Skriptum VUT FEKT, 2004 (CS)
CHo,Z.H.,Jones,J.P.,Singh,M.: Foundations of Medical Imaging,John Wiley & Sons. 1993 (EN)
Krestl,E.: Imaging Systems for Medical Diagnostics,Siemens Aktiengesellschaft. 1990 (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Basic idea and methods of projection image reconstruction.
Quality evaluation of x-ray CT systems. Dose of x-ray ionising energy during imaging process and trends to reduce it.
Basic idea of MR imaging (MRI). Application of the radiofrequency part of electromagnetic spectrum to transfer information about living environment and some parts of ecosystems.
Physical phenomena of magnetic resonance. Methods of magnetisation measurements. Basic idea of magnetic resonance spectroscopy.
Basic principles of MRI systems construction.
Quality evaluation of MRI systems. Influence of electromagnetic smog to MRI system. Dose of acoustic, radiofrequency and magnetic field energy during MRI imaging.
Emission computed tomography SPECT (single-photon). Basic principles of SPECT systems construction.
Idea of emission computed tomography image reconstruction. Quality evaluation of SPECT systems.
Emission computed tomography PET (double-photon). Basic principles of PET systems construction. Quality evaluation of PET systems. Dose of ionising energy during SPECT and PET imaging process.
Application of different forms of signals to non-direct syntheses imaging systems construction- ultrasound tomography.
Application of different forms of signals to non-direct syntheses imaging systems construction- impedance tomography.
Application of different forms of signals to non-direct syntheses imaging systems construction- lasers tomography.
Laboratory exercise
Teacher / Lecturer
Syllabus
Projection-reconstruction image modelling basic principles of filtered back projection reconstruction.
Projection-reconstruction image modelling basic principles of Fourier projection reconstruction.
Projection-reconstruction image modelling: acquisition data properties influence to quality image reconstruction.
Practical acquaints with standard x-ray CT system.
Practical acquaints with multislice x-ray CT system.
Magnetic resonance phenomena modelling.
Magnetic resonance magnetisation methods measurements modelling.
2DFT MRI reconstruction of MR image modelling.
Practical acquaints with MRI system.
Iterative reconstruction of SPECT image modelling.
Practical acquaints with SPECT system.
Practical acquaints with impedance tomography system.