Course detail

Applied Evolutionary Algorithms

FIT-EVOAcad. year: 2018/2019

Overview of principles of stochastic search techniques: Monte Carlo (MC) methods, evolutionary algorithms (EAs). Detailed explanation of selected MC algorithms: Metropolis algorithm, simulated annealing, their application for optimization and simulation. Overview of basic principles of EAs: evolutionary programming (EP), evolution strategies (ES), genetic algorithms (GA), genetic programming (GP).  Advanced EAs and their applications: numerical optimization, differential evolution (DE), social algoritmhs: ant colony optimization (ACO) and particle swarm optimization (PSO). Multiobjective optimization algorithms. Applications in solving engineering problems and artificial intelligence.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Ability of problem formulation for the solution on the base of evolutionary computation. Knowledge of analysis and design methods for evolutionary algorithms.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Evaluated practices, project. In the case of a reported barrier preventing the student to perform scheduled activity, the guarantor can allow the student to perform this activity on an alternative date.
Exam prerequisites:
None.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

Survey about actual optimization techniques and evolutionary algorithms for solution of complex, NP complete problems. To learn how to solve typical complex tasks from engineering practice using evolutionary techniques.

Specification of controlled education, way of implementation and compensation for absences

Not applicable.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Brabazon, A., O'Neill, M., McGarraghy, S.: Natural Computing Algorithms. Springer-Verlag Berlin Heidelberg, 2015, ISBN 978-3-662-43630-1
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd ed. Springer-Verlag Berlin Heidelberg, 2015, ISBN 978-3-662-44873-1
Kvasnička, V., Pospíchal, J., Tiňo, P.: Evolučné algoritmy. STU Bratislava, Bratislava, 2000, ISBN 80-227-1377-5
Luke, S.: Essentials of Metaheuristics. Lulu, 2015, ISBN 978-1-300-54962-8
Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken, New Jersey, 2009, ISBN 978-0-470-27858-1

Classification of course in study plans

  • Programme IT-MSC-2 Master's

    branch MMI , 0 year of study, summer semester, elective
    branch MBI , 0 year of study, summer semester, compulsory-optional
    branch MSK , 0 year of study, summer semester, elective
    branch MMM , 0 year of study, summer semester, elective
    branch MBS , 0 year of study, summer semester, elective
    branch MPV , 0 year of study, summer semester, compulsory-optional
    branch MIS , 0 year of study, summer semester, elective
    branch MIN , 0 year of study, summer semester, elective
    branch MGM , 0 year of study, summer semester, elective

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

  1. Principles of stochastic search algorithms.
  2. Monte Carlo methods.
  3. Evolutionary programming and evolution strategies.
  4. Genetic algorithms.
  5. Genetic programming.
  6. Models of computational development.
  7. Statistical evaluation of experiments.
  8. Ant colony optimization.
  9. Particle swarm optimization.
  10. Differential evolution.
  11. Applications of evolutionary algorithms.
  12. Fundamentals of multiobjective optimization.
  13. Advanced algorithms for multiobjective optimization.

Exercise in computer lab

12 hod., compulsory

Teacher / Lecturer

Project

14 hod., compulsory

Teacher / Lecturer

Syllabus

Realisation of individual topics from the area of evolutionary computation.