Course detail
Power Transmission Networks
FEKT-LPRSAcad. year: 2019/2020
Basic issues related to power transmission. Solution of stabilized state transmission power networks. Wave processes on the lines and their inhomogeneities.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2) Real and ideal HV power line - special operation modes.
3) Voltage and current waves along steady state power line with distributed parameters.
4) Overvoltage in power systems. Four-terminal networks substitution of power line elements.
5) Solution of a simple-type four-terminal network as electric circuit and by cascade equations.
6) Cascade and parallel connection of four-terminal networks.
7) Mathematical modeling of a HV system as a total. Specification of the system operation modes.
8) Solution of steady-state of HV and UHV systems by Gauss-Seidel method.
9) Reactors, capacitors and synchronous compensators on HV systems.
10) Transmission capacity and parameters compensation of power lines. Compensation equipments positioning.
11) The example of steady state calculation of UHV system.
12) The example of compensation of parameters UHV line.
13) The example waves' processes waves u(x,t) and i(x,t) on an ideal UHV line.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Reiss,L.,Malý,K.,Pavlíček,Z.,Němeček,F.: Teoretická elektroenergetika I, ALFA, 1977. (CS)
Saadat, H.: Power system analysis. McGraw-Hill, 1999. (EN)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2) Real and ideal HV power line - special operation modes.
3) Voltage and current waves along steady state power line with distributed parameters.
4) Overvoltage in power systems. Four-terminal networks substitution of power line elements.
5) Solution of a simple-type four-terminal network as electric circuit and by cascade equations.
6) Cascade and parallel connection of four-terminal networks.
7) Mathematical modeling of a HV system as a total. Specification of the system operation modes.
8) Solution of steady-state of HV and UHV systems by Gauss-Seidel method.
9) Reactors, capacitors and synchronous compensators on HV systems.
10) Transmission capacity and parameters compensation of power lines. Compensation equipments positioning.
11) The example of steady state calculation of UHV system.
12) The example of compensation of parameters UHV line.
13) The example waves' processes waves u(x,t) and i(x,t) on an ideal UHV line.
Fundamentals seminar
Teacher / Lecturer
Syllabus
2) The conditions calculation on UHV line - real and ideal for natural load transmission. Calculation line parameters and cascade constants.
3 )Wave processes on the lines and their inhomogeneities.
4) Four-terminal networks substitution of power line elements. Solution of a simple-type four-terminal network as electric circuit and by cascade equations.
5) Cascade and parallel connection of four-terminal networks.
6) Calculation the cascade transformer and power line and their substitution by four-terminal networks. Calculation parameters final four-terminal network in matrix form.
7) Serial and parallel parameters compensation of 400 kV lines.
8) Credit test.
Exercise in computer lab
Teacher / Lecturer
Syllabus
2) Calculation the cascade parameters of a simple-type HV power lines for serial and parallel connection and their steady-state operation by using PC
Laboratory exercise
Teacher / Lecturer
Syllabus
2) Measuring parallel connection of two-port networks
3) Measuring wave processes on the model of UHV line
Elearning