Přístupnostní navigace
E-application
Search Search Close
Course detail
FEKT-DKA-MA1Acad. year: 2021/2022
The course focuses on consolidating and expanding students' knowledge of probability theory, mathematical statistics and theory of selected methods of operations research. Thus it begins with a thorough and correct introduction of probability and its basic properties. Then we define a random variable, its numerical characteristics and distribution. On this basis we then build descriptive statistics and statistical hypothesis testing problem, the choice of the appropriate test and explanation of conclusions and findings of tests. In operational research we discuss linear programming and its geometric and algebraic solutions, transportation and assignment problem, and an overview of the dynamic and probabilistic programming methods and inventories. In this section the illustrative examples are taken primarily from economics. In the next the course includes an introduction to the theory of stochastic processes types. Therefore, it starts with repetition of necessary mathematical tools (matrices, determinants, solving equations, decomposition into partial fractions, probability). Then we construct the theory of stochastic processes, where we discuss Markovský processes and chains, both discrete and continuous. We include a basic classification of state and students learn to determine them. Great attention is paid to their asymptotic properties. The next section introduces the award transitions between states and students learn the decision-making processes and their possible solutions. In conclusion, we mention the hidden Markov processes and possible solutions.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Guided consultation
Teacher / Lecturer