Detail předmětu
Statistics, Stochastic Processes, Operations Research
FEKT-DKA-MA1Ak. rok: 2021/2022
Předmět se věnuje upevnění a rozšíření znalostí studentů v oblasti teorie pravděpodobnosti, matematické statistiky a vybraných metod z teorie operačního výzkumu. Proto se začíná důkladným a korektním zavedením pravděpodobnosti, odvozením základních vlastností pravděpodobnosti. Dále je definována náhodná veličina, její číselné charakteristiky a rozdělení. Na tento základ potom navazuje nejdříve popisná statistika a potom problematika testování statistických hypotéz, volba vhodného testu a vysvětlení závěrů jednotlivých testů. Z operačního výzkumu je do kurzu zařazeno lineární programování a jeho geometrické i algebraické řešení, dopravní a přiřazovací úloha a přehled o dynamickém a pravděpodobnostním programování a metodách skladových zásob. V této části jsou ilustrační příklady brány především z ekonomie. Dále předmět obsahuje úvod do teorie náhodných procesů: typy. Proto je v jeho úvodu zařazeno nejdříve opakování potřebného matematického aparátu (matice, determinanty, řešení rovnic, rozklad na parciální zlomky, pravděpodobnost). Poté je budována teorie náhodných procesů, kde se věnujeme Markovským procesům a řetězcům, a to jak diskrétním, tak i spojitým. Je provedena základní klasifikace stavů a studenti jsou seznámeni se způsoby jejich určení.Velká pozornost je věnována jejich asymptotickým vlastnostem. V další části se zavádí ocenění přechodů mezi jednotlivými stavy a studenti jsou seznámeni s rozhodovacími procesy a s možnostmi jejich řešení. V závěru se zmíníme o skrytých Markovských procesech a možnostech jejich řešení.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Nabízen zahraničním studentům
Výsledky učení předmětu
• Popsat pravděpodobnostní úlohu pomocí množinových operací.
• Vypočítat parametry základních rozdělení náhodných veličin a to jak spojitých, tak i diskrétních.
• Definovat základní statistické charakteristiky. Vyjmenovat základní statistické testy.
• Vybrat vhodnou metodu pro statistické zpracování zadaných dat a provést statistický test.
• Vysvětlit podstatu lineárního programování.
• Převést slovně zadanou úlohu na kanonický tvar a řešit ji vhodnou metodou.
• Provést analýzu citlivosti geometrickým i algebraickým způsobem.
• Převést zadanou úlohu na duální.
• Vysvětlit rozdíl mezi lineárním a nelineárním programováním.
• Popsat základní vlastnosti náhodných procesů.
• Vysvětlit základní Markovskou vlastnost.
• Sestavit matici Markovského řetezce.
• Vysvětlit postup výpočtu mocniny matice.
• Provést klasifikaci stavů Markovského řetezce v diskrétním i spojitém případě.
• Provést analýzu Markovského řetezce pomocí Z-transformace v diskrétním případě a pomocí Laplaceovy transformace ve spojitém případě.
• Vysvětli postup řešení u rozhodovacích úloh.
• Popsat postup řešení při rozhodovacích úloze s alternativami.
• Diskutovat o rozdílech mezi Markovskými řetězci a skrytými Markovskými řetězci.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Až 100 bodů za semestrální zkoušku, která má část písemnou a část ústní. Zadání pro písemnou část zkoušky obsahuje teoretické i početní úlohy, které slouží pro ověření orientace studenta ve statistice, operačním výzkumu a náhodných procesech. Přičemž početní úkoly slouží k ověření schopností studenta aplikovat jednotlivé metody v technické a ekonomické praxi.
Osnovy výuky
2. Discrete and continuous distributions of random variables. Properties of the normal distribution. Limit theorems.
3. Statistics. Selection. Statistical processing of the material. Basic parameters and characteristics of the population selection.
4. Basic point and interval estimates. Goodness. Analysis of variance.
5. Operations Research. Linear programming. Graphic solution. Simplex method.
6. Dual role. The sensitivity analysis. The economic interpretation of linear programming.
7. Nonlinear programming.
8. Solving of problems of nonlinear programming.
9. Random processes, basic concepts, characteristics of random processes.
10. Discrete Markov chain. Homogeneous Markov chains, classification of states. Regular Markov chains, limit vector, the fundamental matrix, and the median of the first transition.
11. Absorption chain mean transit time, transit and residence. Analysis of Markov chains using Z-transform. Calculation of powers of the transition matrix.
12. Continuous time Markov chains. Classification using the Laplace transform. Poisson process. Linear growth process, linear process of extinction, linear process of growth and decline.
13. Markov decision processes. The award transitions. Asymptotic properties. Decision-making processes with alternatives. Hidden Markov processes.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for engineers. 6th Edition. John Wiley \& Sons, Inc., New York 2015.ISBN-13: 978-1118539712. (EN)
Doporučená literatura
Papoulis, A., Pillai, S. U.: Probability, Random Variables and Stochastic Processes, 4th Edition, 2012. ISBN-13: 978-0071226615 (EN)
Sarma, R. D.:Basic Applied Mathematics for the Physical Sciences 3rd New edition Edition, 2017, ISBN-13: 978-8131787823 (EN)
Taha, H.A.: Operations research. An Introduction. 9th Edition, Macmillan Publishing Company, New York 2013.ISBN-13: 978-0132555937 (EN)
Zařazení předmětu ve studijních plánech
- Program DKA-EKT doktorský 0 ročník, zimní semestr, povinně volitelný
- Program DKA-KAM doktorský 0 ročník, zimní semestr, povinně volitelný
- Program DKA-MET doktorský 0 ročník, zimní semestr, povinně volitelný
- Program DKA-SEE doktorský 0 ročník, zimní semestr, povinně volitelný
- Program DKA-TEE doktorský 0 ročník, zimní semestr, povinně volitelný
- Program DKA-TLI doktorský 0 ročník, zimní semestr, povinně volitelný
- Program DKAD-EIT doktorský 0 ročník, zimní semestr, povinně volitelný