Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-9MMMAcad. year: 2021/2022
Multiscale modeling of materials is an essential approach to understanding the properties between microstructure and macroscopic physical properties of materials. Atomistic methods based on empirical and semi-empirical potentials and Monte Carlo methods represent effective and commonly used tools for computer simulations of nanostructures (thin fibers, nanotubes, epitaxial layers, graphene), studies of radiation damage, moving dislocations under tension, solid solutions, phase transformations in multiferroics, and the like. In this course, the students will gain knowledge about the methods of computer modeling of materials from atomic level to macroscopic studies based on the finite element method. The individual methods will be demonstrated on simple examples that either allow analytical solution or can be studied using a simple program. In a series of individual assignments, students will gain practical experience with the implementation of these algorithms using Python and with methods of data visualization. Personal experience with the implementation of these approaches is a prerequisite for the systematic use of commonly available simulation programs and for the independent solution of research projects.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Lecture
Teacher / Lecturer
Syllabus