Course detail
Vector and Matrix Algebra
FEKT-BPC-VMPAcad. year: 2022/2023
In the field of matrix claculus, main attention is paid to vector spaces, basic notions, linear combination of vectors, linear dependence, independence vectors, base, dimension of a vector space, matrix algebra, eigenvalues and eigenvectors, matrix functions and their applications.
In the field of numerical mathematics, the following topics are covered: root finding,matrices systems of linear equations, convergence analysis, curve fitting (interpolation and splines, least squares method), numerical differentiation and integration.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- decide whether vectors are linearly independent and whether they form a basis of a vector space ( v reálném i komplexním oboru)
- add and multiply matrices, compute the determinant of a square matrix to the 4x4 type, compute the rank and the inverse of a matrix
- solve a system of linear equations
- compute eigenvalues and eigenvectors of a matrix
- analyze type of a matrix using eigenvalues
- compute a matrix exponential for certain classes of matrices
- solve matrices systems of linear equations
- find the root of a given equation f(x)=0 using the bisection method, Newton method or the iterative method, describe these methods including the convergence conditions
- solve a system of linear equations using Gaussian elimination with pivoting, Jacobi and Gauss-Seidel iteration methods, discuss the advantages and disadvantages of these methods
- find the approximation of a function by spline functions
- find the approximation of a function given by table of points by the least squares method (linear, quadratic or exponential approximation)
- estimate the derivative of a given function using numerical differentiation
- compute the numerical approximation of a definite integral using trapezoidal and Simpson method, describe the principal of these methods, compare them according to their accuracy
- find the approximate solution of a differential equation using Euler method, modified Euler methods and Runge-Kutta methods
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Matrices, matrix algebra, determinant of a matrix
3. Systems of linear equations.
4. Eigenvalues and eigenvectors of a matrix.
5. Ortogonalization, ortogonal projection.
6. Hermitian a unitary matrix.
7. Definite matrices, characteristic using eigenvalues.
8. Matrix functions, matrix exponential, applications.
9. Introduction to numerical methods. Numerical methods for root finding (bisection method, Newton method, iterative method)
10. Numerical solution of linear equations (Gaussian elimination with pivoting, Jacobi and Gauss-Seidel iterative methods).
11. Interpolation: interpolation polynomial (Lagrange and Newton), splines (linear and cubic)
12. Least squares method. Numerical differentiation.
13. Numerical differentiation and integration.
13. Numerical solution of differential equations: initial problems (Euler method and its modifications, Runge-Kutta methods), boundary value problems (very briefly).
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
FAJMON, B., HLAVIČKOVÁ, I., NOVÁK, M., Matematika 3. Elektronický text FEKT VUT, Brno, 2013 (CS)
SCHMIDTMAYER, J., Maticový počet a jeho použití v technice, SNTL Praha 1974 (CS)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Matice, algebra matic, determinant matice.
3. Systémy lineárních rovnic.
4. Vlastní čísla a vektory matice.
5. Ortogonalizace, ortogonální projekce.
6. Hermitovské a unitární matice.
7. Definitnost matic, charakteristika pomocí vlastních čísel.
8. Maticové funkce, exponenciála matice, aplikace.
9. Úvod do numerických metod. Numerické řešení nelineárních rovnic (metoda bisekce, Newtonova metoda, metoda prosté iterace).
10. Numerické řešení soustav nelineárních rovnic. Soustavy lineárních rovnic (Gaussova eliminace s výběrem hlavního prvku, Jacobiho a Gaussova-Seidelova iterační metoda).
11. Interpolace: interpolační polynom (Lagrangeův a Newtonův), splajny (lineární a kubický).
12. Metoda nejmenších čtverců. Numerické derivování.
13. Numerické integrování.
Fundamentals seminar
Teacher / Lecturer
Syllabus
2. Systémy lineárních rovnic. vlastní čísla a vektory matice.
3. Ortogonalizace, ortogonální projekce.
4. Definitnost matic, charakteristika pomocí vlastních čísel,maticové funkce, exponenciála matice, aplikace.
5.Numerické řešení lineárních a nelineárních rovnic. Numerické derivování a integrování.
6. Interpolace: interpolační polynom metoda nejmenších čtverců. Numerické derivování.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Systémy lineárních rovnic. vlastní čísla a vektory matice.
3. Ortogonalizace, ortogonální projekce.
4. Definitnost matic, charakteristika pomocí vlastních čísel,maticové funkce, exponenciála matice, aplikace.
5.Numerické řešení lineárních a nelineárních rovnic.
6. Interpolace: interpolační polynom metoda nejmenších čtverců. Numerické derivování.
7. Numerické derivování a integrování.
Elearning