Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-RKB-AAcad. year: 2024/2025
The course provides a comprehensive overview od constitutive dependencies and constitutive models of matters, not only of solids (i.e. strructural materials) but also of liquids and gases. It deals also with time dependence of stress-strain response of materials and describes it using different viscoelastic models. It introduces the theory of finite strains and applies it in description of non-linear elastic as well as poroelastic and non-elastic behavour of soft biological tissues, also with taking their anisotropy caused by their fibrous structure into consideration. Models accounting for waviness and directional dispersion of collagen fibres in the tissues are adressed and also models non-Newtonean behaviour of blood. Also other specific properties of biological tissues absent at technical materials are presented, including their impact on procedures of mechanical testing and ways how to take them into consideration in constitutive models of soft tissues. For each of the presented models basic constitutive equations are formulated, on the basis of which the response of the tissue under load is derived using both analytical and numerical (FEM) methods, including applications of the models in ANSYS software.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Entry knowledge
Rules for evaluation and completion of the course
Aims
Study aids
Prerequisites and corequisites
Basic literature
Recommended reading
Elearning
Classification of course in study plans
specialization BIO , 2 year of study, winter semester, compulsory
specialization CZS , 1 year of study, winter semester, elective
Lecture
Teacher / Lecturer
Syllabus
Computer-assisted exercise
2.-3. FEM simulations of tests of elstomers
4.-5. Identification of constitutive models of elastomers
6.-7. Models of arterial wall
8.-9. Models of anisotropic behaviour of elastomers
10. Model of Mullinsova efektu
11.-12. Simulation of viscoelastic behaviour
13. Project formulation, course-unit credit.