Course detail

Geometric Control Theory

FSI-9GTRAcad. year: 2024/2025

Advanced Differential Geometry and Representation Theory in the theory Optimal Transport of Non-Holonomic Systems. Algebraic view of the dynamic systems.

Language of instruction

Czech

Mode of study

Not applicable.

Entry knowledge

The knowledge of mathematics gained within the bachelor's study programme.

Rules for evaluation and completion of the course

The course is finished by written and oral examination. The written part is 80% and the oral part 20% of the grade.
Výuka se odehrává formou přednášky a není kontrolovaná

Aims

Building the basics of geometric control theory. Ability to apply theory to engineering problems.
Students will learn to use advanced parts of differential geometry and representation theory. For a specific mechanism: the construction of kinematic chain, the solution of differential kinematics, design of optimal trajectory.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Enrico Le Donne, Lecture notes on sub-Riemannian geometry, University of Jyväskylä (EN)
L. Zexiang, S. Sastry , R. M. Murray, A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994. (EN)
Y.L. Sachkov. Control theory on lie groups. J Math Sci, 156(3):381--439, 2009. (EN)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme D-APM-P Doctoral 1 year of study, winter semester, recommended course
  • Programme D-APM-K Doctoral 1 year of study, winter semester, recommended course

Type of course unit

 

Lecture

20 hod., optionally

Teacher / Lecturer

Syllabus

1. Lie algebras, definitions and basic concepts, examples (orthogonal, special, Heisenberg, etc. ), adjoint representation, semi-simple, solvable and nilpotent Lie algebras.

2. Algebra of controllability, configuration space, non-homonomous conditions, differential kinematics, Pffaf's system, vector fields and bracket.

3. Nilpotent approximations (symbols), definitions and basic properties, adapted and privileged coordinates, Bellaiche's Algorithm.

4. Lie groups. definitions, examples (special, orthogonal, spin, etc.), Lie algebra as the tangent space of Lie groups.

5. Leftinvariant vector fields, definition, Lie algebra of left-vector vector fields, flows of vector fields, a group structure under of nilpotent Lie algebras.

6. Sub - Riemanian (sR) geometry, distribution, sR-metric, horizontal curves.

7. Minimal curves (local extremals), PMP for nilpotent approximations, normal and abnormal extremals, sR-Hamiltonian

8. Heisenberg geometry, Heisenberg's group and algebra, description of the mechanism known as dubin car.

9. Other Structures on Heisenberg geometry. Overview of Heisenberg Geometry, Lagrange and CR Geometry. Infinitesimal automorphisms.

10. Conjunction points. Fixed points of infinitesimal automorphisms. Heisenberg's apple.