Course detail

Microcomputer control of electrical drives

FEKT-MMRPAcad. year: 2010/2011

In the course, modern microprocessors for electric drives control and their use in electric drives with feedback control are taught. To demonstrate problems, digital signal processor Motorola DSP56800 is used in laboratory practice. In laboratory practice, students work individually with microprocessor development system. There are simple tasks done to meet an architecture and peripheries of microprocessors for electric drives (DSP architecture, A/D converter, pulse-width modulation generator (PWM), timers, etc.), and in next, algorithms of control loop on real electric drive (PSD controller, 1st order higher limiting filter) are done.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Orientation in modern digital control of electrical drives.
Microcontrollers programming knowledges.

Prerequisites

Basic knowldge of programming technology incl. some assembly language usage.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.

Course curriculum

HW of elctric drive, microprocessors used in electric drives, DSP56800 architecture, development and testing tools, control algorithms of electric drives, motor control libraries

Work placements

Not applicable.

Aims

Introduction to modern digital control of drives.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Klíma B., Stupka R.;Mikroprocesorová technika v elektrických pohonech; Elektronický text FEKT VUT v Brně (CS)

Recommended reading

Freescale Inc. ; DSP56800E 16-Bit Digital Signal Processor Core (EN)
Freescale Inc.; DSP56800E_Quick_Start User’s Manual Targeting Freescale 56F8xxx Platform (EN)
Freescale Inc.; 56F8000 Peripherial reference manual (EN)
Freescale Inc.; 56F83xx Motor Control Library Reference Manual Rev. 2.0, 04/2005 (EN)

Classification of course in study plans

  • Programme EEKR-M Master's

    branch M-SVE , 2 year of study, winter semester, elective specialised

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, winter semester, elective specialised

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

Digital control units,basic modules,function.
Mikroprocessors, microcontrollers.
Microcontrollers Intel MCS-96 Family.
Architecture of I80C196KA,KB,KC,KR,MC
I/O system, interrupt system.
A/D converter, HSIO, timer/counter.
MCS-96 Instruction set.
Assembler96, directives,Linker96.
Pulse-width modulation, voltage converter control.
Revolving and place measuring,incremental sensor,resolvers.
Separation of circuits,control of step motors.
Synchronization processor an power,rectifier control.
Other ways : Transputers, Signal processors, Xilinx.

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Řízení tranzistorového měniče.
HSIO,šířkově pulsní modulace,řízení ss motorku.
Komunikace řídících jednotek,dálkové řízení pohonu.
Introduction,safety rules,working place.
MCS-96 Microproccessor Development System.
Microcomputer TEMS196LAB,peripheral module PERIF96.
Program MON96LAB.exe, description of basic commands.
Editing source program,Assembler96,controlling of program.
Elementary programming examples I.
Elementary programming examples II.
Rectifier control, line display control.
Control of step motor, two motors simultaneous control.
Application of sensor IRC,revolves and position measure.
Contol of voltage converter.
PWM, HSIO, DC drive control.
Data transmission, remote control of DC drive.