Přístupnostní navigace
E-application
Search Search Close
Branch Details
Original title in Czech: Mikroelektronika a technologieFEKTAbbreviation: PP-METAcad. year: 2019/2020
Programme: Electrical Engineering and Communication
Length of Study: 4 years
Accredited from: 25.7.2007Accredited until: 31.12.2020
Profile
The doctoral study programme is focused on the preparation of scientific and research specialists in various fields of microelectronics and technology for electrical engineering. Particularly in the theory, design and testing of integrated circuits and systems, in semiconductor devices and structures, intelligent sensors, optoelectronics, electrical technology materials, industrial processes and electric power sources. Doctoral studies are closely associated with scientific and research activities of the faculty staff. The aim is to provide the PhD education (to the graduates of master's programme) in all subareas of microelectronics and deepen the theoretical knowledge (especially in mathematics and physics), teach the PhD students to the methods of scientific work, and provide them with special knowledge and practical skills (both obtained mainly during their researching activities associated with solving dissertation thesis issues). Current and expected future trends play an important role, particularly in electronics and communication technology. Due to the developed theoretical education of high quality and specialisation in chosen field of study the PhD graduates are sought as specialists in all areas of electrical engineering.The aim is to provide the doctor education in all these particular branches to students educated in university magister study, to make deeper their theoretical knowledge, to give them also requisite special knowledge and practical skills and to teach them methods of scientific work.
Key learning outcomes
The doctors are able to solve scientific and complex engineering tasks from the area of microelectronics and electrical technology Wide fundamentals and deep theoretical basis of the study program bring high adaptability and high qualification of doctors for the most of requirements of their future creative practice in all areas of microelectronics and electrotechnology. The doctors are competent to work as scientists and researchers in many areas of basic research or research and development, as high-specialists in the development, design, construction, and application areas in many institutions, companies, and organisations of the electrical and electronics research, development, and industry as in the areas of electrical services and systems, inclusively in the special institutions of the state administration. In all of these branches they are able to work also as the leading scientific-, research-, development- or technical managers.
Occupational profiles of graduates with examples
The graduate of the doctoral study programme is able to solve scientific and complex engineering tasks in the field of microelectronics and technology for electrical engineering. The graduate has reached a high level of general theoretical knowledge in the branch and is further specialized in the area of his/her dissertation thesis. Having broad theoretical knowledge, the PhD graduate is capable of meeting work requirements of both fundamental and applied research. The PhD graduates are sought out as specialists in all branches of microelectronics and technology. They are able to work as research workers, as members of management staff in fundamental or applied research, as design, construction or operation specialists in various research and development institutions, electronics manufacturing firms, and to work for various users of electronic systems and devices. They will be able to employ advanced technology everywhere in a creative way.
Guarantor
prof. Ing. Vladislav Musil, CSc.
Issued topics of Doctoral Study Program
The aim of this work is to provide a research of advanced and optimized circuit- and architecture-level solutions for true low-voltage high power efficient analog-to-digital converters for energy harvesting and biomedical applications. The voltage supply target is in range of 0.5-0.3V with power consumption in range of nanowatts. The function of the proposed structures will be described and simulated by using 0.18 µm CMOS technology from TSMC. The verified design of this low-voltage convertor should be the main result.
Tutor: Khateb Fabian, prof. Ing. et Ing., Ph.D. et Ph.D.
The focus of the thesis is to optimise the design means of preparation of the aperiodic optical diffractive structures in the fibre waveguides aimed to the construction of the sensors and spectral filters. The thesis will utilise and show the design and verification of the necessary modifications of the present mask based and femtosecond laser based fibre grating exposition systems to allow for the exposition of the aperiodic diffractive structures. The use of the interferometric method will be studied.. Forming the LP aperiodic structures will be experimentally shown and acquired features compared to the Bragg grating features. The design model for forming the desired functionality grating is expected to be composed. The means for the control of the grating properties of the aperiodic diffractive structures will be designed and experimentally verified. Reference: Kayshyap, R.: Fiber Bragg Gratings. AP, San Diego, 1999.ISBN 0-12-400560-8 Othonos, A, Kyriacos, K.: Fiber Bragg Gratings, fundamentaks and applications in telecommunications and sensing. AH, Norwood, 1999. ISBN0-89006-344-3
Tutor: Urban František, doc. Ing., CSc.
In the course of the research the student will become familiar with t the current issue of smart home. The research will lead to the design and development of methods that can be used to design new microelectronics structures for smart home. The basic method will be the measurement of the chromaticity of the incident radiation and the regulation of lighting.
Tutor: Šteffan Pavel, doc. Ing., Ph.D.
The topic is focused on the study and preparation of the materials for lithium-ion accumulators. Will be selected and optimized methods for preparing of electrode materials with operating voltages higher than 4.5 V such as LiNi0,5Mn1,5O4, NMC with high Ni contend, LiCoPO4, or Li-rich NMC. These cathode materials will be subsequently characterized by physical and electrochemical methods. In order to achieve the highest stability and capacity of these materials.
Tutor: Kazda Tomáš, doc. Ing., Ph.D.
The focus of the thesis is to compare the methods, to design and optimise the opto-electronic system adapted for fast capturing and analysis of the spectral features of the optical and fibre optic sensoric sreuctures. The thesis will compare the capabilities and limits of the traditional as well as the novel approaches to the capturing of the optical spectra and will show the design and verificcation of the viable solution suitable for the detection and analysis of the fast spectral changes of fibre Bragg gratings and F-P resonators in the application as the sensing structures. The expected capabilities of the designed solutions will be compared to the experimentally acquired features. Reference: Kayshyap, R.: Fiber Bragg Gratings. AP, San Diego, 1999.ISBN 0-12-400560-8 Othonos, A, Kyriacos, K.: Fiber Bragg Gratings, fundamentaks and applications in telecommunications and sensing. AH, Norwood, 1999. ISBN0-89006-344-3
The goal of the thesis is to study and analyze the optical fibre resonant and mode conversion macrostructures with longitudinal step and gradient changes of the propagation constant. The aim is also finding the applicable methods of fabrication of the structures and optimizing the structures for their use in sensing. The works will utilize the abilities of the station for the optical fibres hetero splicing and the station for laser ultra micromashining of optical fibres. The expected results will be the optimized samples of the fibre heterostuctures for sensing and the optimised methods of their fabrication Reference: Kayshyap, R.: Fiber Bragg Gratings. AP, San Diego, 1999.ISBN 0-12-400560-8 Othonos, A, Kyriacos, K.: Fiber Bragg Gratings, fundamentaks and applications in telecommunications and sensing. AH, Norwood, 1999. ISBN0-89006-344-3
Study the impact of environmental conditions on electronic components that are used to construct satellites on low orbits. Design and fabricate a test chamber to simulate these conditions. Select a set of basic electronic components to undergo extensive tests and evaluate the results of these tests. Based on the results of the test, design a methodology for selecting the space components.
Tutor: Háze Jiří, doc. Ing., Ph.D.
Preparation of metal components with different porosity suitable for implantation and study of their biodegradable properties in physiological and environmental environment.
Tutor: Sedlaříková Marie, doc. Ing., CSc.
Utilizing new circuit principles for low-voltage low-power analog circuit design. These circuits serve mainly in biomedical area. Theoretical design and experimental evaluations using program Cadence with technology 0.18 um from TSMC. The verified design of a current conveyor should be the main result.
Nonconventional semiconductor structures for low-voltage integrated circuits. Theoretical design, simulations, and experimental evaluations of designed integrated circuits with low-voltage and low-power. The verified design of a current conveyor should be the main result.
Tutor: Musil Vladislav, prof. Ing., CSc.
Conventional decoding schemes for asynchronous delta sigma modulators (ADSMs) limit input dynamic range of modulators, and always requires a high speed sampling clock. Improve a decoding scheme for asynchronous delta sigma modulators. Implement the ADSMs including novel decoding scheme by designing critical sub-modules on transistor level and verify the overall top-level ADSMs performance as a whole with Cadence simulation environment.
Tutor: Kledrowetz Vilém, doc. Ing., Ph.D.
Many new 2D materials were discovered in last years, such as monoelemental materials (graphene, phosphorene, germanene, antimonene) or transition metal dichalcogenides (TMD - MoS2, WS2 and WSe2). All these materials can be potentially used in microelectronics and in sensor technology. The work is focused on research and development of these materials, preparation a FET structure and their characterization for use in sensor applications.
Tutor: Pekárek Jan, doc. Ing., Ph.D.
New design techniques for operational amplifiers with extremely low voltage supply. The voltage supply target is in range of 0.5-0.3V with power consumption in range of nanowatts. The function of the proposed structures will be described and simulated by using 0.18 µm CMOS technology from TSMC. The verified design of this operational amplifier should be the main result.
Thermoelectric generators can utilize temperature gradients from natural sources or temperature gradients during the processing of waste heat. These heat flows, they are abundant, predictable and steady for a limited time - so it can serve as a reliable energy source in many applications. Very low voltage achievable in one thermocouple requires integration of an extremely large number of thermocouples or Peltier TEC modules in one system and their connection to the inverter operating with extremely low voltage. The aim of the dissertation is to elaborate methods of mass production of thermoelectric cells connected in series, including the integration of simple electronic circuits for their control. The use of printing technologies is envisaged.
Tutor: Boušek Jaroslav, prof. Ing., CSc.
Printed electronics is developing rapidly and reaches into all areas of use of electronics, because it allows to produce electronic equipment in an unusual way, in large volumes and usually at very low cost. It is based on the use of new, organic, materials and new or adapted methods of printing. Currently there are already well-developed methods of mass production and development focuses on the design of the equipment. The aim of the dissertation is to elaborate methods of printing of electric sensors powered by photovoltaic and thermoelectric cells, including integration of simple electronic circuits for their control.
The topic is focused on the study of lithium-ion accumulators and new Na-Ion accumulators. The aim of this work will be to propose methods of the preparation and subsequently preparation, characterization and optimization of electrode materials for Na-ion systems using carbon structures.
Research of extremely sensitive high temperature anemometers using advanced materials and technologies. The motivation of the work is to find the construction of an extremely sensitive anemometer for soldering and firing processes. The intended application makes high demands on the design of the sensor and the materials used. Part of the work will be an assessment of the properties of the proposed structures and assessment of other possible application areas
AFM (atomic force microscopy) is one of the suitable techniques for observing electrode surfaces in their natural environment. The aim of this project is to develop a methodology that will make it possible to use this microscope technique to observe the processes that are taking place in different types of battery systems in different operating modes. The outcome of the project will to verify the existing knowledge of the processes taking place in the batteries and to obtain new knowledge about these processes.
Tutor: Bača Petr, doc. Ing., Ph.D.
Thesis deals with the design of the microelectronic blocks of fractional-order filters approximation using a filter of higher order integer. Active filters of third-order are use to create filter of (1 + alpha)-order, where alpha is between zero to one. One of the filters should practically implemented and measured.
Research and development of function layer in the structure of the solar cell for absorbtion of light and free charge carier separation.
Tutor: Vaněk Jiří, doc. Ing., Ph.D.