study programme

Cybernetics, Control and Measurements

Original title in Czech: Kybernetika, automatizace a měřeníFaculty: FEECAbbreviation: DKC-KAMAcad. year: 2023/2024

Type of study programme: Doctoral

Study programme code: P0714D150006

Degree awarded: Ph.D.

Language of instruction: Czech

Accreditation: 13.8.2019 - 12.8.2029

Mode of study

Combined study

Standard study length

4 years

Programme supervisor

Doctoral Board

Chairman :
prof. Ing. Pavel Václavek, Ph.D.
Councillor internal :
doc. Ing. Zdeněk Bradáč, Ph.D.
prof. Ing. Pavel Jura, CSc.
doc. Ing. Petr Beneš, Ph.D.
doc. RNDr. Zdeněk Šmarda, CSc.
Councillor external :
prof. Ing. Pavel Ripka, CSc.
Prof. Ing. Roman Prokop, CSc.
doc. Ing. Eduard Janeček, CSc.
prof. Dr. Ing. Alexandr Štefek, Dr.
prof. Ing. Tomáš Vyhlídal, Ph.D.

Fields of education

Area Topic Share [%]
Cybernetics Without thematic area 50
Electrical Engineering Without thematic area 50

Study aims

The doctor study programme "Cybernetics, Control and Measurements" is devoted to the preparation of the high quality scientific and research specialists in various branches of control technology, measurement techniques, automatic systems, robotics, artificial intelligence and computer vision.
The aim is to provide the doctor education in all these particular branches to students educated in university magister study, to make deeper their theoretical knowledge, to give them also requisite special knowledge and practical skills and to teach them methods of scientific work.
Through a systematic and comprehensive view of management and measurement, graduates of the study program successfully apply to key management and managerial positions and functions in which they use system view, knowledge of system analysis and optimal management.

Graduate profile

Graduate of doctoral studies is profiled to independent creative work and critical thinking based on the systemic view of both technical and non-technical systems and the world as a whole. The graduate program is equipped with the necessary knowledge of mathematics, physics, electrical engineering, theory and practice of control and regulation, measuring techniques, robotics, artificial intelligence, image processing and other fields of applied electrical engineering and informatics. One of the characteristic features of graduates is the ability to integrate a broad spectrum of knowledge and to create functional technical as well as organizational and economic systems.
All graduates of the doctoral program Cybernetics, Automation and Measurement demonstrate during their studies:
• mathematical, physical and electrotechnical principles relevant to measurement and control;
• electronic measuring systems, embedded systems, communication systems, control theory, automatic control systems and artificial intelligence;
• design and operation of electrotechnical, electronic, measuring, control and communication systems.
The graduates are well versed in modern technologies (Industry 4.0, Artificial Intelligence, Signal Processing, Computer Vision, Advanced Management Methods, Industrial Measurement and Control Systems, Mobile and Stationary Robotics, Communication Systems, Functional and System Security).
The graduates are trained to find the work in technical practice, creative work, research and development, production, management and managerial positions in technical or business firms and companies at the highest qualification levels.

Profession characteristics

Graduates will apply in particular:
- in research, development and design teams,
- in the field of professional activity in production or business organizations,
- in the academic sphere and in other institutions involved in science, research, development and innovation,
- in all areas of the company where cybernetic systems or cybernetic principles are being applied
Our graduates are particularly experienced in the analysis, design, creation or management of complex measurement or control systems, as well as in the programming, integration, support, maintenance or sale of these systems.

Fulfilment criteria

Doctoral studies are carried out according to the individual study plan, which is prepared by the supervisor in the beginning of the study in cooperation with the doctoral student. The individual curriculum specifies all the duties determined in accordance with the BUT Study and Examination Rules, which the doctoral student must fulfill to successfully finish his studies. These responsibilities are time-bound throughout the study period, they are scored and fixed at fixed deadlines.
Students will write and perform tests of obligatory subjects (Selected Chapters of Control Engineering, Selected Chapters of Measurement Techniques and Exam in English before the state doctoral examination), at least two compulsory elective courses in view of the focus of his dissertation, at least two optional subjects (English for PhD students; Quoting in Scientific Practice; Resolving Innovation Assignments; Scientific Publishing from A to Z).
The student may enroll for the state doctoral exam only after all the tests prescribed by his / her individual study plan have been completed. Before the state doctoral exam, the student draws up a dissertation thesis describing in detail the aims of the thesis, a thorough evaluation of the state of knowledge in the area of ​​the dissertation solved, or the characteristics of the methods it intends to apply in the solution.
The defense of the controversy that is opposed is part of the state doctoral exam. In the next part of the exam, the student must demonstrate deep theoretical and practical knowledge in the field of electrical engineering, control technology, cybernetics and measuring techniques. The state doctoral examination is in oral form and, in addition to the discussion on the dissertation thesis, it also consists of thematic areas related to compulsory and compulsory elective subjects.
To defend the dissertation, the student reports after the state doctoral examination and after fulfilling conditions for termination, such as participation in teaching, scientific and professional activity (creative activity) and at least a monthly study or work placement at a foreign institution or participation in an international creative project. The studies are finished by successful defence of the dissertation thesis.

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study the students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

  1. Modelling of special safety function with respect on industrial Ethernet

    The topic is aimed on research of new special safety functions special safety functions models for machinery and the process safety. The objectives of the thesis consist of the a thorough analysis of the current safety function models, research a thorough analysis of the current models available safety functions, examining the impact of communication, particularly an industrial Ethernet. The student will be designed new models on the base on the analysis and will develop new algorithms for verification of the relevant safety logic functions and security elements for machinery and process safety. The topic will be solved in relation to national and international projects running in cooperation with industrial partners.

    Tutor: Štohl Radek, Ing., Ph.D.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DKC-AM1Selected chaps from automatic controlcs4Compulsoryyes
DKC-ET1Electrotechnical materials, material systems and production processescs4Compulsory-optionalyes
DKC-EE1Mathematical Modelling of Electrical Power Systemscs4Compulsory-optionalyes
DKC-ME1Modern Microelectronic Systemscs4Compulsory-optionalyes
DKC-RE1Modern electronic circuit designcs4Compulsory-optionalyes
DKC-TK1Optimization Methods and Queuing Theorycs4Compulsory-optionalyes
DKC-FY1Junctions and nanostructurescs4Compulsory-optionalyes
DKC-TE1Special Measurement Methodscs4Compulsory-optionalyes
DKC-MA1Statistics, Stochastic Processes, Operations Researchcs4Compulsory-optionalyes
DKC-VE1Selected problems from power electronics and electrical drivescs4Compulsory-optionalyes
DKX-JA6English for post-graduatesen4Electiveyes
DKC-RIZSolving of innovative taskscs2Electiveyes
DKC-EIZScientific publishing A to Zcs2Electiveyes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DKC-AM2Selected chaps from measuring techniquescs4Compulsoryyes
DKC-TK2Applied cryptographycs4Compulsory-optionalyes
DKC-MA2Discrete Processes in Electrical Engineeringcs4Compulsory-optionalyes
DKC-ME2Microelectronic technologiescs4Compulsory-optionalyes
DKC-RE2Modern digital wireless communicationcs4Compulsory-optionalyes
DKC-EE2New Trends and Technologies in Power System Generationcs4Compulsory-optionalyes
DKC-TE2Numerical Computations with Partial Differential Equationscs4Compulsory-optionalyes
DKC-FY2Spectroscopic methods for non-destructive diagnostics cs4Compulsory-optionalyes
DKC-ET2Selected diagnostic methods, reliability and qualitycs4Compulsory-optionalyes
DKC-VE2Topical Issues of Electrical Machines and Apparatuscs4Compulsory-optionalyes
DKX-JA6English for post-graduatesen4Electiveyes
DKC-CVPQuotations in a research workcs2Electiveyes
DKC-RIZSolving of innovative taskscs2Electiveyes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DKX-QJAEnglish for the state doctoral examen4Electiveyes