Detail předmětu

Modern means in automation

FEKT-CMPAAk. rok: 2011/2012

Automatizace, Data, informace, znalosti, Expertní systémy, Umělé neuronové sítě, Strojové učení, Tvorba a řešení inovačních zadání, Počítačové vidění

Jazyk výuky

angličtina

Počet kreditů

6

Výsledky učení předmětu

Student po absolvování kurzu získá teoritické i praktické znalosti v oblasti počítačového vidění, umělých neuronových sítí, expertních systémů a jejich aplikací v automatizaci.

Prerekvizity

Jsou požadovány znalosti na úrovni středoškolského studia.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Podmínkou udělení zápočtu je 100% účast na povinné části výuky. Studenti jsou hodnoceni průběžně během studia ve cvičeních. Za semestr tak mohou získat max. 20 bodů. Závěrečná písemná zkouška je hodnocena max. 70ti body, ústní zkouška max. 10ti body.

Osnovy výuky

Automatizace - význam, prostředky, technická kybernetika
Data, informace, znalosti - definice, příklady.
Expertní systémy - definice, architektura, teoretické zdroje, charakteristické rysy, inferenční mechanismus, tvorba báze znalostí, získávání znalostí, průběh konzultace, aplikace.
Umělé neuronové sítě - definice, neuron, topologie, paradigmata, vícevrstvá perceptronová neuronová síť, učení backpropagation, aktivace, vlastnosti.
Strojové učení - definice, přezpracování, učení s učitelem, optimalizační algoritmy, učení bez učitele, meta-learning.
Tvorba a řešení inovačních zadání - analýza objektu zdokonalování a inovační zadání, řešení invenčích úloh s podporou expertního systému a informací z patentových databází.
Počítačové vidění - úvod, snímání, digitalizace, předzpracování obrazy, segmentace obrazu.

Učební cíle

Cílem kurzu je seznámit studenty s moderními metodami a prostředky v automatizaci. Získat znalosti a zkušenosti klasifikaci obrazové informace a použitím neuronových sítí a expertních systémů v automatizaci.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

Kasabov,N.K.: Foundations of Neural Networks, Fuzzy systems and Knowledge Engineering.The MIT Press,1996,ISBN 0-262-11212-4 (EN)
Schalkoff,R.J.:Artificial Neural Networks. The MIT Press,1997,ISBN 0-07-115554-6 (EN)
Sonka M., Hlavac V., Boyle R.: Image Processing, Analysis and Machine Vision. Thomson, 2008, ISBN 978-0-495-08252-1 (EN)
Šíma J., Neruda R.: Teoretické otázky neuronových sítí. Matfyzpress, Praha 1996 (EN)

Doporučená literatura

Berka P. a kol.: Expertní systémy. Skripta, VŠE Praha, 1998. (CS)
Hlaváč V.- Šonka M.: Počítačové vidění. Grada 1992,Praha,ISBN 80-85424-67-3 (CS)
Mařík V.-Štěpánková O.-Lažanský J.:Umělá inteligence 1. ACADEMIA 1993,Praha,ISBN 80-200-0496-3 (CS)
Mařík V.-Štěpánková O.-Lažanský J.:Umělá inteligence 2. ACADEMIA 1997,Praha,ISBN 80-200-0504-8 (CS)

Zařazení předmětu ve studijních plánech

  • Program EEKR-BC bakalářský

    obor BC-AMT , 2 ročník, letní semestr, volitelný oborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Znalostní systém v automatizaci.
Data a znalosti. Proces získávání znalostí.
Automatizované získávání znalostí.
Počítačové vidění, úvod, snímání,digitalizace
Předzpracování obrazy, filtrace, zvýraznění hran
Segmentace obrazu, prahování, určení hranic mezi oblastmi
Popis obrazu
Klasifikace obraze, výběr a uspořádání příznaků, princip činnosti klasifikátorů
Umělé neuronové sítě.
Vícevrstvá neuronová síť.
Modelování dynamických systémů pomoci neuronových sítí.
Expertní systémy, struktura a činnost ES.
Použití expertních systémů v automatizaci

Cvičení na počítači

39 hod., povinná

Vyučující / Lektor

Osnova

Obrazový analyzátor DIPS.
Obrazový analyzátor DIPS
Předzpracování obrazu pomocí DIPS
Předzpracování obrazu pomocí DIPS
Segmentace obrazu
Segmentace obrazu
Popis a analýza scény.
Popis a analýza scény.
Matlab with Simulink
Backpropagation - modelování pomocí Matlab
Backpropagation - modelování pomocí Matlab
Modelování dynamických systémů pomocí neuronových sítí
Zápočet