Detail předmětu

Pravděpodobnost a statistika 1

FP-Vps1PAk. rok: 2013/2014

Předmět je zaměřen na seznámení studentů se základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor), matematické statistiky (popisná statistika, náhodný výběr, odhady parametrů, testování statistických hypotéz) a se statistickým softwarem Statistica. Úlohy na procvičení látky jsou orientovány na praktické aplikace zejména ve strojírenskéch oborech.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Studenti získají potřebné znalosti z teorie pravděpodobnosti, popisné statistiky a teorie matematické statistiky, které jim umožní pochopit a aplikovat stochastické modely technických jevů a procesů, založené na těchto metodách.

Prerekvizity

Základy diferenciálního a integrálního počtu.

Korekvizity

Nejsou aplikovány.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, klasifikace dostatečně anebo lepší všech kontrolních prací a semestrální práce.
Zkouška: písemná forma; praktická část (2 příklady z partií teorie
pravděpodobnosti: pravděpodobnost a její vlastnosti, náhodná veličina, rozdělení pravděpodobnosti Bi, H, Po, N, náhodný vektor; 2 příklady z matematické statistiky: bodové a intervalové odhady parametrů, testy hypotéz o rozděleních a parametrech) teoretická část (4 otázky na základní pojmy, jejich vlastnosti, význam a praktické užití a důkazy dvou vět); hodnocení: každý příklad 0 až 20 bodů a každá teoretická otázka 0 až 5 bodů; klasifikace podle celkového součtu bodů (0 bodů u některého příkladu nebo celé teoretické části znamená celkově 0 bodů): výborně (90 až 100 bodů a oba důkazy), velmi dobře (80 až 89 bodů a jeden důkaz), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující(0 až 49 bodů).

Osnovy výuky

Náhodné jevy, jevové pole a pravděpodobnost (vlastnosti).
Podmíněná pravděpodobnost a nezávislé jevy (vlastnosti).
Spolehlivost systémů. Náhodná veličina (druhy, distribuční funkce).
Funkční charakteristiky diskrétních a spojitých náhodných veličin.
Číselné charakteristiky diskrétních a spojitých náhodných veličin.
Základní diskrétní rozdělení K, Bi, H, Po (vlastnosti a užití).
Základní spojitá rozdělení R, N, E (vlastnosti a užití).
Náhodný vektor, druhy, funkční a číselné charakteristiky.
Rozdělení transformovaných náhodných veličin.
Zákon velkých čísel, centrální limitní věta.
Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
Odhady parametrů (bodové a intervalové odhady parametrů Bi a N).
Testování statistických hypotéz.
Testy hypotéz o parametrech Bi a N.

Učební cíle

Seznámení studentů oboru Matematické inženýrství s pojmy, metodami a postupy teorie pravděpodobnosti, popisné a matematické statistiky, a se statistickým softwarem Statistica. Formování stochastického způsobu myšlení pro tvorbu matematických modelů s důrazem na strojírenské obory.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Cvičení je kontrolované a o náhradě zameškané výuky rozhoduje učitel cvičení.

Základní literatura

Montgomery, D. C. - Renger, G.: Probability and Statistics. New York,1977 (EN)

Zařazení předmětu ve studijních plánech

  • Program BAK-KME bakalářský

    obor BAK-MME , 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Náhodné jevy, jevové pole a pravděpodobnost (vlastnosti).
Podmíněná pravděpodobnost a nezávislé jevy (vlastnosti).
Spolehlivost systémů. Náhodná veličina (druhy, distribuční funkce).
Funkční charakteristiky diskrétních a spojitých náhodných veličin.
Číselné charakteristiky diskrétních a spojitých náhodných veličin.
Základní diskrétní rozdělení K, Bi, H, Po (vlastnosti a užití).
Základní spojitá rozdělení R, N, E (vlastnosti a užití).
Náhodný vektor, druhy, funkční a číselné charakteristiky.
Rozdělení transformovaných náhodných veličin.
Zákon velkých čísel, centrální limitní věta.
Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
Odhady parametrů (bodové a intervalové odhady parametrů Bi a N).
Testování statistických hypotéz.
Testy hypotéz o parametrech Bi a N.

Cvičení

26 hod., povinná

Vyučující / Lektor