Detail předmětu

Pokročilé metody analýz a modelování

FP-PpmaPAk. rok: 2014/2015

Obsahem předmětu je seznámení studentů s vybranými pokročilými metodami analýz a technikami modelování (fuzzy logika, umělé neuronové sítě, genetické algoritmy) formou vysvětlení principů těchto teorií a jejich následných aplikací do manažerské praxe.

Jazyk výuky

čeština

Počet kreditů

4

Zajišťuje ústav

Výsledky učení předmětu

Získané znalosti a dovednosti předmětu umožní absolventům kvalitní a moderní přístup při procesech analýz a modelování v národním hospodářství a soukromém sektoru, organizacích, podnicích, firmách, společnostech, bankách, atd. zejména v manažerské, ale i ekonomické a finanční sféře.

Prerekvizity

Znalosti z oblasti matematiky (lineární algebra, vektory, analýza funkcí, operace s maticemi) statistiky (analýza časových řad, regresní analýza, užití statistických metod v ekonomii), operační analýzy (základní metody optimalizace, lineární programování), finanční analýzy a plánování (analýza zisku a nákladů, cash flow, bonitní a bankrotní model).

Plánované vzdělávací činnosti a výukové metody

Výuka probíhá formou přednášek, které mají charakter výkladu základních principů, metodologie dané disciplíny a problémů. Cvičení podporují zejména praktické ovládnutí látky vyložené na přednáškách.

Způsob a kritéria hodnocení

K udělení zápočtu bude požadována aktivní účast na cvičeních, odevzdání závěrečné písemné práce, popř. písemný test. Rozsah seminární práce bude činit cca 8 -12 stránek s individuálním zaměřením studenta na problematiku z praxe, vedoucí k řešení za pomoci teorie fuzzy logiky, umělých neuronových sítí nebo genetických algoritmů. Klasifikovaný zápočet je klasifikován podle ECTS. Její provedení je písemnou formou testu s bodovým hodnocením v rozsahu 0-20 bodů. A-20-19;B18-17;C16-15;D14-13;E12-;F10-0.

Osnovy výuky

1,2. Fuzzy logika (FL): Seznámení se s základními pojmy a pravidly fuzzy logiky, tvorbou modelů. Uvedení příkladů aplikací fuzzy logiky v rozhodování, jako je např. manažerské a investiční rozhodování, predikce atd.
3,4. Umělé neuronové sítě (UNS): Seznámení se s základními pojmy v oblasti umělých neuronových sítí, uvedení pojmu perceptron, vícevrstvá neuronová síť a jejich parametrů. Aplikace zahrnuje investiční rozhodování, odhady cen výrobků a množstevní odhady, odhad cen nemovitostí, oceňování bonity klienta atd.
5,6. Genetické algoritmy (GA): Seznámení se základy genetiky, analogií mezi přírodou a matematickým popisem, umožňující řešení problémů rozhodování. Je uvedeno použití v oblasti optimalizace široké palety problémů – optimalizace investiční strategie, řízení výroby, řezných plánů, aproximace křivek, řešení problému obchodního cestujícího, využití shlukové analýzy apod.
7. Teorie chaosu: Teorie pojednává o možnosti lepšího popisu ekonomických jevů než je tomu u klasických metod. Je objasněn pojem chaos a řád, fraktál, uvedeno využití této teorie při určení míry chaosu u měřeného sledovaného systému.
8. Datamining: Uvedení pojmu co znamená datamining, definování cílů, výběr techniky modelování, zdroje a příprava dat, tvorba modelů, jejich ověření, vyhodnocení, implementace a údržba. Uvedení příkladů použití pro volbu strategie spolupráce se zákazníkem, direkt mailing apod.
9. Modelování: Uvedení pojmu systém a jeho identifikaci a simulaci. Popis využití FL, UNS a GA při simulaci rozhodovacích procesů v podnikatelství.
10. Predikce:Uvedení metod predikce časových řad pomocí FL, UNS a GA a jejich využití pro predikci budoucího vývoje nejrůznějších ekonomických veličin v praxi.
11. Kapitálový trh: Využití FL, UNS a GA na kapitálových trzích. Je uveden možný proces rozhodování s cílem dosažení optima při nákupu, prodeji nebo držení akcií, indexů, kurzů měn nebo komodit. Jsou uvedeny příklady na optimalizaci portfolia, predikci apod.
12. Rozhodování: Uvedení pojmu rozhodování. Popis využití FL, UNS a GA pro rozhodovacích procesů v podnikatelství.
13. Shrnutí

Učební cíle

Cílem výše uvedeného předmětu je seznámení se s některými nestandardními pokročilými metodami analýz a technikami modelování za účelem podpory rozhodování v podnikatelství formou vysvětlení si principu těchto teorií, naučit se pracovat s těmito teoriemi a jejich aplikací.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách není kontrolována. Účast na cvičeních je povinná a je systematicky kontrolována. Student je povinen neúčast omluvit. Je plně v kompetenci učitele posoudit důvodnost omluvy. Formy nahrazení zameškané výuky stanoví učitel individuálně.

Základní literatura

DOSTÁL, P.: Advanced Decision making in Business and Public Services, Akademické nakladatelství CERM, 2011 Brno,ISBN 978-80-7204-747-5 (EN)
DOSTÁL, P.: Pokročilé metody analýz a modelování v podnikatelství a veřejné správě, Akademické nakladatelství CERM, 2008 Brno,ISBN 978-80-7204-605-8 (CS)
DOSTÁL, P, RAIS, K., SOJKA, Z.: Pokročilé metody manažerského rozhodování, Praha Grada, 2005., ISBN 80-247-1338-1 (CS)
THE MATHWORKS. MATLAB – User’s Guide, The MathWorks, Inc., 2011. (EN)

Doporučená literatura

ALTROCK,C.: Fuzzy Logic &Neurofuzzy – Applications in Business & Finance, Book & Cd Edition, 1996, 375 s., ISBN 0-13-591512-0. (EN)
DAVIS,L.: Handbook of Genetic Algorithms, Int. Thomson Com. Press, 1991, 385 s., ISBN 1-850-32825-0. (EN)
FANTA, J.: Technologie umělé inteligence na kapitálových trzích, UK Praha, 1999, 92 s., ISBN 80-7184-8661. (CS)
GATELY, E.: Neural Network for Financial Forecasting, John Wiley & Sons Inc., 1996, 169 s., ISBN 0-471-11212-7. (EN)
HERBST,F.: Analyzing and Forecasting Futures Prices, John Wiley & Sons Inc., 1992, 238 s., ISBN 0-471-53312-2. (EN)
PETERS, E.: Fractal Market Analysis – Applying Chaos Theory, John Wiley & Sons Inc., 1994, 315 s., ISBN 0-471-58524-6. (EN)
RAIS, K., SMEJKAL,V.: Řízení rizik, Grada, 2004, 274 s., ISBN 80-247-0198-7. (CS)
REBEIRO,R.R., ZIMMERMANN,H.J.: Soft Computing in Financial Engineering, Spring Verlag Company, 1999, 509 s., ISBN 3-7908-1173-4. (EN)

Zařazení předmětu ve studijních plánech

  • Program MGR magisterský navazující

    obor MGR-PFO , 2 ročník, letní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

20 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod
2. Fuzzy logika - teorie
3. Fuzzy logika + aplikace – Excel
4. Fuzzy logika – aplikace Matlab
5. Umělé neuronové site - teorie
6. Umělé neuronové sítě + aplikace Matlab
7. Genetické algoritmy - teorie
8. Genetické algoritmy + aplikace Matlab
9. Teorie chaosu
10. Datamining

Cvičení s počítačovou podporou

10 hod., povinná

Vyučující / Lektor

Osnova

1. Fuzzy logika - Excel
2. Fuzzy logika – seminární práce I.
3. Fuzzy logika - seminární práce II.
4. Fuzzy logika - MATLAB
5. Zápočet