Detail předmětu
Počítačová podpora lékařské diagnostiky
FEKT-LPDGAk. rok: 2014/2015
Předmět je věnován použití umělé inteligence v medicíně. Je orientován na získání znalostí o počítačově podporované lékařské diagnostice, principech rozhodování v medicíně, práci s neurčitostí v medicínských datech, usuzování za podmínek neurčitosti, principech fuzzy vyjádření neurčité informace a stavbě expertních systémů. Praktické znalosti získají studenti v oblasti programování expertních systémů.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- popsat základní způsoby počítačového zpracování biomedicínských dat,
- vysvětlit základní pojmy počítačově podporované lékařské diagnostiky,
- popsat principy základních metod pravděpodobnostního rozhodování,
- diskutovat výhody a nevýhody jednotlivých metod,
- navrhovat jednoduché expertní systémy,
- na základě definovaných požadavků vyhodnotit kvalitu rozhodovacích metod.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
až 70 bodů za písemnou zkoušku
Zkouška je zaměřena na ověření orientace v základních pojmech počítačově podporované lékařské diagnostiky a schopnosti aplikovat základní principy rozhodování v medicíně.
Osnovy výuky
2. Pravděpodobnostní usuzování v medicíně, diagnostické testy.
3. Pravděpodobnostní testy, kvalita testů, šance, Bayesův teorém.
4. Předtestová a potestová pravděpodobnost, senzitivita a specificita, rozhodovací stromy.
5. Reprezentace znalostí, produkční pravidla.
6. Logika v reprezentaci znalostí, Vennovy diagramy, výroková logika.
7. Inference, modus ponens.
8. Prokazování tvrzení, rezoluční pravidlo.
9. Příklady rezoluce.
10. Neurčitost a nepřesná inference.
11. Fuzzy množiny.
12. Fuzzy logika.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Krishnamoorthy, C. S., Rajeev, S.: Artificial Intelligence and Expert Systems for Engineers. CRC Press, 1996. (EN)
Nguyen, H. T., Walker, E. A.: A First Course in Fuzzy Logic. CRC Press, 1997. (EN)
Provazník, I., Kozumplík, J. Expertní systémy. Brno: VUTIUM, 1999. ISBN 8021414863 (CS)
Zařazení předmětu ve studijních plánech
- Program EEKR-ML1 magisterský navazující
obor ML1-BEI , 2 ročník, zimní semestr, volitelný oborový
- Program EEKR-ML magisterský navazující
obor ML-BEI , 2 ročník, zimní semestr, volitelný oborový
- Program EEKR-CZV celoživotní vzdělávání (není studentem)
obor ET-CZV , 1 ročník, zimní semestr, volitelný oborový
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Principy rozhodování v medicíně, medicínská data, informace, znalosti, metaznalosti, hypotézy, statistika v rozhodování, interpretace diagnóz.
Neurčitost v medicínských datech, usuzování za podmínek neurčitosti, klasická Bayesovská pravděpodobnost v. faktory určitosti v řešení medicínských problémů.
Míra věrohodnosti a míra nevěrohodnosti v procesu strojového usuzování, podobnost s lidským usuzováním, principy fuzzy vyjádření neurčité informace.
Fuzzy čísla, fuzzy relace a fuzzy logika pro PPLD.
Stavba expertních systémů, význam znalostí a faktů, proces strojového usuzování.
Reprezentace medicínských znalostí, produkční pravidla, rozhodovací stromy.
Deduktivní logika, výroková logika a predikátová logika v medicínské diagnostice.
Logické systémy a rezoluční metoda, dopředné a zpětné řetězení znalostí.
Programování expertních systémů, základy jazyka CLIPS, příklady návrhu expertních systémů v jazyce CLIPS.
Znalostní inženýrství, kooperace znalostního inženýra a lékařského experta v získávání znalostí, principy a zásady návrhu expertních systémů.
Fuzzy pravidla v expertních systémech.
Kompoziční pravidlo inference v medicínských expertních systémech, defuzzifikace pro stanovení jednoznačné diagnózy.
Cvičení na počítači
Vyučující / Lektor
Osnova