Detail předmětu
Základy variačního počtu
FAST-CA58Ak. rok: 2014/2015
Prostory funkcí, pojem funkcionálu, první a druhá derivace funkcionálu, Eulerovy a Lagrangeovy podmínky, silná a slabá konvergence, klasická, minimizační a variační formulace diferenciálních problémů (příklady z mechaniky stavebních konstrukcí), numerické řešení počátečních a okrajových úloh, Ritzova a Galerkinova metoda, metoda konečných prvků, přehled dalších variačních metod, prostorová a časová diskretizace evolučních úloh.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
En
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
6. Konvexní funkcionály. Silná a slabá konvergence.
7. Klasická, minimizační a variační formulace diferenciálních problémů.
8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
9. Numerické řešení počátečních úloh. Diskretizační schémata.
10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
11. Metoda konečných prvků, srovnání s metodou sítí.
12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Doporučená literatura
Rektorys K.: Variační metody v inženýrských problémech a v problémech matematické fyziky. Academia, 1999. (CS)
S. Fučík, A. Kufner: Nonlinear Differential Equations. Elsevier, 1980. (EN)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
6. Konvexní funkcionály. Silná a slabá konvergence.
7. Klasická, minimizační a variační formulace diferenciálních problémů.
8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
9. Numerické řešení počátečních úloh. Diskretizační schémata.
10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
11. Metoda konečných prvků, srovnání s metodou sítí.
12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.
Cvičení
Vyučující / Lektor
Osnova
1. Lineární metrické, normované a unitární prostory. Věty o pevném bodu.
2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
6. Konvexní funkcionály. Silná a slabá konvergence.
7. Klasická, minimizační a variační formulace diferenciálních problémů.
8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
9. Numerické řešení počátečních úloh. Diskretizační schémata.
10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
11. Metoda konečných prvků, srovnání s metodou sítí.
12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.