Detail předmětu
Matematika 2
FEKT-KMA2Ak. rok: 2017/2018
Diferenciální počet funkce více proměnných. Obyčejné diferenciální rovnice, základní pojmy, analytické metody řešení, příklady užití diferenciálních rovnic. Diferenciální počet v komplexním oboru, derivace funkce, Cauchy-Riemannovy podmínky, holomorfní funkce. Integrální počet v komplexním oboru, Cauchyova věta, Cauchyův vzorec, Laurentova řada, singulární body, residuová věta. Laplaceova transformace, praktické aplikace. Fourierovy řady. Z-transformace, diskrétní systémy, diferenční rovnice.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- spočítat parciální derivace funkce více proměnných a používat vzorce na gradient a tečnu ke grafu funkce více proměnných;
- rozlišit separovatelné a lineární diferenciální rovnice a také je řešit;
- řešit lineární diferenciální rovnice vyššího řádu se speciální pravou stranou;
- určit z Cauchy Riemannových podmínek, zda je komplexní funkce holomorfní a holomorfní funkce derivovat;
- počítat integrál přes křivku z komplexní funkce pomoci definice, aplikovat Cauchyovou větu na integrál z holomorfní funkce;
- určovat póly a počítat rezidua v pólech 1.-ho i vyššího řádu, aplikovat reziduovou větu na integrál z meromorfní funkce;
- řešit diferenciální rovnice pomoci Laplaceovy transformace;
- najít reálnou Fourierovou řadu sudé, liché a obecné funkce, rozvinout funkci v sinovou ev. koninovou řadu;
- řešit diferenční rovnice pomoci Z - transformace.
Prerekvizity
- upravovat zlomky, řešit kvadratickou rovnici;
- aplikovat základní principy integrálního a diferenciálního počtu funkce jedné proměnné;
- umět sečíst geometrickou řadu s kvocientem |q|<1;
- používat metodu per partes pro určitý integrál.
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Zkouška je zaměřena na ověření znalosti v problematice řešení diferenciálních rovnic, derivovani a integrování funkce komplexní proměnné, rozvoje funkce v Forierovou řadu a použití Laplaceovy a Z-transformace.
Osnovy výuky
2. Obyčejné diferenciální rovnice, základní pojmy.
3. Řešení lineární diferenciální rovnice prvního řádu.
4. Homogénní lineární diferenciální rovnice vyššího řádu.
5. Řešení nehomogénní lineární diferenciální rovnice vyššího řádu s konstantními koeficienty.
6. Diferenciální počet v komplexním oboru, derivace funkce,
7. Cauchy-Riemannovy podmínky, holomorfní funkce.
8. Integrální počet v komplexním oboru, Cauchyova věta, Cauchyův vzorec,
9. Laurentova řada, singulární body.
10. Residuová věta.
11. Laplaceova transformace, pojem konvoluce, praktické aplikace.
12. Fourierova transformace, souvislost s Laplaceovou transformací, ukázky použití.
13. Z-transformace, diskrétní systémy, diferenční rovnice.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Svoboda Z., Vítovec J.: Matematika 2 (CS)
Doporučená literatura
Zařazení předmětu ve studijních plánech
- Program EEKR-BK bakalářský
obor BK-EST , 1 ročník, letní semestr, povinný
obor BK-TLI , 1 ročník, letní semestr, povinný
obor BK-AMT , 1 ročník, letní semestr, povinný
obor BK-SEE , 1 ročník, letní semestr, povinný
obor BK-MET , 1 ročník, letní semestr, povinný - Program IBEP-TZ bakalářský
obor TZ-IBP , 1 ročník, letní semestr, povinný
- Program EEKR-CZV celoživotní vzdělávání (není studentem)
obor ET-CZV , 1 ročník, letní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Lineární diferenciální rovnice n-tého řádu s konstantními koeficienty.
3. Funkce komplexní proměnné - transformace komplexní roviny.
4. Derivace komplexní funkce, Cauchy-Riemannovy podmínky, holomorfní funkce.
5. Základní transcendentní funkce, aplikace na elektrostatické pole.
6. Integrální počet v komplexním oboru, Cauchyova věta, Cauchyův vzorec.
7. Laurentova řada, singulární body a jejich klasifikace, pojem rezidua a reziduová věta.
8. Přímá Laplaceova transformace, pojem konvoluce, gramatika transformace.
9. Zpětná Laplaceova transformace, impulzy, elektrické obvody.
10. Fourierovy řady, trigonometrický a exponenciální tvar, základní vlastnosti.
11. Přímá a zpětná Fourierova transformace, souvislost s Laplaceovou transformací, šířka impulzu a šířka spektra.
12. Přímá a zpětná transformace Z.
13. Použití Z transformace při řešení diferenčních rovnic.
Cvičení na počítači
Vyučující / Lektor
Osnova