Detail předmětu

Matematické základy fuzzy logiky

FIT-IMFAk. rok: 2017/2018

Studenti si na začátku semestru vyberou z nabízených témat. Na pravidelných týdenních seminářích studenti vysvětlují předmětnou tématiku a následně se diskutuje o možných problémech. Na závěrečném semináři je provedeno celkové zhodnocení.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Absolvováním tohoto kurzu student získá hlubší náhled do vybrané partie matematiky (v závislosti na seminární skupině), bude schopný samostatně prezentovat nastudovanou problematiku a řešit s ní související úkoly.

Schopnost orientovat se v náročnějších matematických textech, schopnost sestavovat netriviální matematické důkazy.

Prerekvizity

Poznatky z předmětů "IDA - Diskrétní matematika" a "IMA - Matematická analýza".

Způsob a kritéria hodnocení

Zisk alespoň 50 bodů z aktivit během semestru.

Osnovy výuky

    Osnova numerických cvičení:
    1. Od klasické logiky k fuzzy logice
    2. Modelování vágních pojmů pomocí fuzzy množin
    3. Základní operace s fuzzy množinami
    4. Princip rozšíření
    5. Triangulární normy, základní pojmy, algebraické vlastnosti
    6. Triangulární normy, konstrukce, generátory
    7. Triangulární konormy, základní pojmy a vlastnosti
    8. Negace ve fuzzy logikách
    9. Implikace ve fuzzy logikách
    10. Agregační operátory, základní vlastnosti
    11. Agregační operátory, aplikace
    12. Fuzzy relace
    13. Fuzzy preferenční struktury

    Osnova ostatní - projekty, práce:
    1. Triangulární normy, třída archimedovských t-norem
    2. Triangulární normy, konstrukce spojitých t-norem
    3. Triangulární normy, konstrukce nespojitých t-norem
    4. Triangulární konormy
    5. Fuzzy negace a jejich vlastnosti
    6. Implikace ve fuzzy logikách
    7. Agregační operátory, průměry
    8. Agregační operatory, aplikace
    9. Fuzzy relace, podobnost, fuzzy rovnost
    10. Fuzzy preferenční struktury

Učební cíle

Rozšířit okruh vědomostí z matematiky s důrazem  na hledání řešení a důkazy matematických problémů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Aktivita na cvičeních (společné řešení problémů, 10 hodnocených cvičení) : 30 bodů.
Projekty: prezentace skupinové práce, 70 bodů.

Prerekvizity a korekvizity

Základní literatura

Alsina, C., Frank, M.J., Schweizer, B., Assocative functions: Triangular Norms and Copulas, World Scientific Publishing Company, 2006Baczynski, M., Jayaram, B., Fuzzy implications, Studies in Fuzziness and Soft Computing, Vol. 231, 2008 Carlsson, Ch., Fullér, R., Fuzzy reasoning in decision making and optimization, Studies in Fuzziness and Soft Computing, Vol. 82, 2002Kolesárová, A., Kováčová, M., Fuzzy množiny a ich aplikácie, STU v Bratislave, 2004

Doporučená literatura

Alsina, C., Frank, M.J., Schweizer, B., Assocative functions: Triangular Norms and Copulas, World Scientific Publishing Company, 2006Kolesárová, A., Kováčová, M., Fuzzy množiny a ich aplikácie, STU v Bratislave, 2004

Zařazení předmětu ve studijních plánech

  • Program IT-BC-3 bakalářský

    obor BIT , 2 ročník, zimní semestr, volitelný

Typ (způsob) výuky

 

Cvičení odborného základu

26 hod., povinná

Vyučující / Lektor

Osnova

  1. Od klasické logiky k fuzzy logice
  2. Modelování vágních pojmů pomocí fuzzy množin
  3. Základní operace s fuzzy množinami
  4. Princip rozšíření
  5. Triangulární normy, základní pojmy, algebraické vlastnosti
  6. Triangulární normy, konstrukce, generátory
  7. Triangulární konormy, základní pojmy a vlastnosti
  8. Negace ve fuzzy logikách
  9. Implikace ve fuzzy logikách
  10. Agregační operátory, základní vlastnosti
  11. Agregační operátory, aplikace
  12. Fuzzy relace
  13. Fuzzy preferenční struktury

Projekt

26 hod., nepovinná

Vyučující / Lektor