Detail předmětu

Inženýrská termodynamika

FSI-KS1Ak. rok: 2018/2019

1) Předmět „Inženýrská termodynamika“ je jedním z teoretických základů procesního inženýrství. Absolvování předmětu umožňuje studentům získat základní znalosti potřebné pro řešení praktických úkolů spojených s prováděním materiálových a energetických bilancí fyzikálně-chemických dějů a navrhováním a strojně-technologických soustav ve zpracovatelském a energetickém průmyslu nebo technologií zpracování odpadů. Předmět v průběhu jednoho semestru seznamuje studenty s metodami a postupy používanými pro popis stavového chování plynů a kapalin, stanovení vlastností látek a jejich směsí potřebné pro veškeré inženýrské návrhy (hustota, viskozita, tepelná vodivost, difuzivita apod.) a určování termodynamických stavových veličin a jejich změn při různých dějích. Jsou analyzovány termodynamické faktory ovlivňující průběh dějů, jejich tepelné zabarvení a podmínky termodynamické rovnováhy. Důraz je kladen na zohlednění chování plynných a kapalných systémů za reálných podmínek.

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

Kurz má za úkol seznámit studenty se základními zákonitostmi při průběhu fyzikálně-chemických dějů a naučit provádět hmotnostní a energetické rozvahy těchto dějů. Získané znalosti a dovednosti mají zásadní důležitost pro praxi procesního inženýra.

Prerekvizity

Základní znalosti matematiky (znalost integrování a derivování, řešení jednoduchých diferenciálních rovnic).
Základní znalosti termodynamiky (stavové chování ideálních plynů a kapalin, první a druhý zákon termodynamický, hlavní termodynamické veličiny)

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Zápočet je dále udělován na základě pravidelné účasti na cvičeních a projevů studenta na cvičeních prokazujících, že již během výukového období získal základní znalosti z předmětu a úspěšného písemného závěrečného testu prokazujícího získané znalosti z předmětu.
K zápočtu je předkládána semestrální práce, jejíž téma je zadáno během výukového období. Hlavní úkoly semestrální práce jsou postupně probírány na cvičeních.
Zkouška se skládá z části písemné a z části ústní. V části písemné musí absolvent prokázat schopnost samostatného řešení zadané výpočtové úlohy dotýkající se rozsahu výuky. Jsou zadány 3 úlohy. Při ústní zkoušce student zdůvodní řešení výpočtové úlohy a prokáže znalosti odpřednášené látky. Celkové hodnocení zohledňuje rovněž výsledky několika písemných testů během semestru a úroveň zpracování semestrální práce.

Učební cíle

Kurz má za úkol seznámit studenty se základními termodynamickými zákonitostmi průběhu dějů v průmyslových zařízeních a naučit studenty provádět základní hmotnostní a energetické rozvahy těchto dějů.
Předmět studenty seznamuje s širokým spektrem látkových vlastností, které jsou důležité pro bilanční, hydraulické, tepelné a difuzní výpočty procesních zařízení. Získané znalosti umožní studentům pochopit vliv pracovních podmínek na průběh a výsledek dějů v technologických zařízeních.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Výuka probíhá formou přednášek prezentovaných v posluchárně s vhodným prezentačním prostředkem. Účast na přednáškách je doporučená. Doprovodný text v elektronické podobě mají studenti k dispozici. Cvičení probíhají v určené učebně a navazují na odpřednášenou látku. Účast na cvičeních je povinná a je kontrolována.

Základní literatura

Green, D., W., Perry, R., H., CHEMICAL ENGINEERS´ HANDBOOK, 8 th editon, 2007, Mc Graw-Hill International Editions, Chemical Engineering Series, , pp 2336, New York, ISBN 978-0-07-142294-9 (EN)
Chopey, N., P., Handbook of chemical engineering calculation. third edition, 2004, McGraw-Hill International Editions, Chemical Engineering Series, 2004, New York, 640 s., ISBN 0-07-136262-2 (EN)
Jürgen Gmehling, Bärbel Kolbe, Michael Kleiber and Jürgen Rarey,2012, Chemical Thermodynamics for Process Simulation, 760 p., Wiley/VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, ISBN 978-3-27-31277-1 (DE)
Riazi, M.R., Characterization and properties of petroleum fractions. ASTM International, 1st edition, West Conshohocken, PA (USA),.2005, ISBN 407-0-8031-3361-8 (EN)
Sandler, S., I., Chemical, biochemical, and engineering thermodynamics, 4th edition, 2006, John Wiley & Sons, Hoboken, 945 p, ISBN 978-0-471-66174-0 (EN)
Shavit A., Gutfinger Ch., Thermodynamics: From Concepts to Applications, 2nd edition, 2009, 649 p, CRC PRES Taylor & Francis Group, Boca Raton, ISBN:978-1-4200-7368-3 (EN)

Doporučená literatura

Míka, V. a kol.: Příklady a úlohy z chemického inženýrství I., VŠCHT Praha (1997).
Míka, V. a kol.: Příklady a úlohy z chemického inženýrství II., VŠCHT Praha (1997). (CS)
Neužil, L., Míka, V.,: Řešení úloh z chemického inženýrství I a II, VŠCHT Praha (1997).
Richard M. Felder, Ronald W. Rosseau: Elementary Principles of Chemical Processes, 2005, Third Edition, John Wiley & Sons, Inc., Hoboken – NJ (USA), ISBN 0-471-68757-X (EN)

Zařazení předmětu ve studijních plánech

  • Program M2I-P magisterský navazující

    obor M-PRI , 1 ročník, zimní semestr, povinný
    obor M-PRI , 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

1.Předmět termodynamiky, základní termodynamické zákony.
2.Vyjadřování koncentrací, přepočty fyzikálních veličin vyjádřených v různých jednotkách a soustavách (anglosaské a SI).
3.Stavové chování plynů a kapalin, odchylky od ideálního chování plynů a kapalin
4.Adiabatické děje, Poissonovy rovnice, expanze a komprese plynů. Izoenthalpický děj a Joule-Thomsonův koeficient.
5.Termodynamické funkce a vlastnosti (entalpie a měrné teplo, vnitřní energie, entropie, Gibbsova energie, Helmholzova funkce). Vliv teploty a tlaku na termodynamické vlastnosti reálných plynných a kapalných soustav.
6.Reakční teplo,.Hessův zákon, Kirchhoffův zákon.
7 Spalné teplo a výhřevnost
8. Podmínky termodynamické rovnováhy dějů.
9. Faktory ovlivňující termodynamickou rovnováhu. Stupeň konverze.
10. Clausius-Clapeyronova rovnice a její aplikace pro určení výparného tepla a tlaku nasycených par.
11. Ideální a reálné roztoky. Raoultův zákon, spojený Raoultův a Daltovův zákon a jejich využití. Henryho zákon a jeho aplikace.
12. Princip destilace a rektifikace. Projevy neideality kapalných soustav na chování reálných soustav při destilaci a rektifikace.
13.Transportní vlastnosti plynů a kapalin a jejich směsí.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

Cvičení z předmětu jsou prováděna formou řešení typových příkladů k probrané problematice.
Studenti pracují na počítačích a samostatně řeší problémy z oblastí:
-Přepočty koncentrací.
-Hmotnostní a energetická bilance ustálených a neustálených systémů a s akumulací hmoty a tepla
-Aplikace stavové rovnice plynů pro reálné plyny.
-Výpočet termodynamických vlastností (entalpie, měrné teplo, entropie, Gibbsova energie) reálných systémů.
-Komprese/expanze plynů a spotřeba/získání energie.
-Výpočet fyzikálních vlastností reálných plynů a kapalin (hustota, viskozita, tepelná vodivost)
-Výpočet tlaku par a výparného tepla.
-Výpočet fugacity a aktivity reálných plynných a kapalných systémů.
-Fázové rovnováhy plyn-kapalina.