Detail předmětu

Vybrané partie matematiky pro inženýry

FEKT-MPC-VPAAk. rok: 2020/2021

Obsahem předmětu jsou základy výpočtu charakteristik skalárních a vektorových polí (gradient, divergence, rotace), výpočet lokálních, vázaných a absolutních extémů funkcí více proměnných, výpočet dvojného, trojného a nevlastního vícerozměrného integrálu , výpočet křivkového a plošného integrálu včetně aplikací zaměřených na potenciál vektorového pole, práce ve vektorovém poli, diferenciální a integrální tvary Maxwellových rovnic a souvislost nevlastního vícerozměrného integrálu s výpočty charakteristik spojitých vícerozměrných náhodných veličin. Po seznámení se základními pojmy je hlavní pozornost zaměřena na výpočty vícerozměrných integrálů na elementárních oblastech, užití tranformací do polárních, válcových a sférických souřadnic, výpočty nevlastních dvojných a trojných integrálů z neohraničené funkce nebo na neohraničených oblastech, výpočet potenciálu vektorových polí, aplikace Stokesovy věty a Gaussovy-Ostrogradského věty, solenoidální pole.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Studenti by po absolvování kursu měli být schopni:
- vypočítat lokální, vázané a absolutní extrémy funkce více proměnných
- vypočítat vícerozměrné integrály na elementárních oblastech.
- transformovat integrály do polárních, válcových a sférických souřadnic.
- vypočítat nevlastní vícerozměrné integrály.
- vypočítat křivkové a plošné integrály ve skalárních a vektorových polí.
- aplikovat integrální věty v teorii polí.

Prerekvizity

Student by měl být schopen aplikovat znalosti z analytické geometrie a matematické analýzy na úrovni středoškolského studia: umět vysvětlit pojmy obecné a parametrické rovnice křivek a ploch a elementárních funkcí. Z předmětů BMA1, BMA2 jsou požadovány základní znalosti diferenciálního počtu funkce jedné proměnné a více proměnných, integrálního počtu funkce jedné proměnné . Především by student měl umět derivovat (včetně parciálních derivací) a integrovat.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky a demonstrační cvičení (počítačová a numerická). Předmět využívá banku příkladů a maplety na serveru UMAT.

Způsob a kritéria hodnocení

Práce během semestru je hodnocena maximálně 30 body (tyto body je možné získat za písemky a domácí úkoly).
Závěrečná písemná zkouška je hodnocena maximálně 70 body a skládá se ze 7 příkladů (1 na extrémy funkcí více proměnných (10 bodů), 2 na vícerozměrný integrál (2 x 10 bodů), 2 na křivkový integrál (2 x 10 bodů), 2 na plošný integrál ( 2 x 10 bodů)).
Zkouška z předmětu bude probíhat prezenčně i distančně.

Osnovy výuky

1) Kvadratické plochy, vektorová analýza
2) Lokální extrémy funkce více proměnných
3) Vázané a absolutní extrémy
4) Vícerozměrný integrál
5) Transformace vícerozměrných integrálů
6) Aplikace vícerozměrných integrálů
7) Nevlastní vícerozměrný integrál
8) Křivkový integrál ve skalární poli
9) Křivkový integrál ve vektorovém poli
10) Potenciál , Greenova věta
11) Plošný integrál ve skalárním poli
12) Plošný integrál ve vektorovém poli
13) Integrální věty

Učební cíle

Cílem předmětu je seznámit studenty se základy teorie a metod výpočtů lokálních a absolutních extrémů funkce více proměnných, dvojných a trojných integrálů, křivkových a plošných integrálů včetně aplikací v technických oborech. Zvládnout základní výpočty vícerozměrných integrálů, zejména transformace vícerozměrných integrálů a výpočty křivkových a plošných integrálů ve skalárních a vektorových polí.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

Krupková, V., Diferencilní a integrállní počet funkce více proměnných, skripta VUT, 1998, 199 s. (CS)

Doporučená literatura

BRABEC, J., HRUZA, B.: Matematická analýza II, SNTL/ALFA, Praha 1986, 579s. (CS)

Elearning

Zařazení předmětu ve studijních plánech

  • Program MPC-KAM magisterský navazující 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení odborného základu

12 hod., povinná

Vyučující / Lektor

Cvičení s počítačovou podporou

14 hod., povinná

Vyučující / Lektor

Elearning