Detail předmětu

Matematika 3

FEKT-BPC-MA3Ak. rok: 2021/2022

Obsahem předmětu jsou základy dvou matematických disciplín: numerických metod a pravděpodobnosti a statistiky.
V části numerické metody se probírá řešení nelineárních rovnic a soustav lineárních rovnic, aproximace funkcí pomocí interpolačního polynomu, splajnu a metodou nejmenších čtverců, numerické derivování a integrování.
Po seznámení se základními pojmy je v pravděpodobnosti hlavní pozornost zaměřena na náhodné veličiny diskrétního a spojitého typu. Závěr kurzu pravděpodobnosti je věnován testování statistických hypotéz.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Studenti by po absolvování kursu měli být schopni z oblasti pravděpodobnosti a statistiky:
- vypočítat základní charakteristiky statistického souboru (aritmetický průměr, medián, modus, rozptyl, směrodatná odchylka)
- pro konkrétní zadání vybrat správný model (klasická, diskrétní, geometrická pravděpodobnost) a vypočítat pravděpodobnost zadaného jevu
- vypočítat podmíněnou pravděpodobnost jevu za dané podmínky
- rozeznat a využít nezávislost jevů při výpočtu pravděpodobnosti
- aplikovat větu o úplné pravděpodobnosti a Bayesův vzorec
- pracovat s pravděpodobnostní funkcí (u diskrétní náhodné veličiny) a hustotou (u spojité náhodné veličiny) a s distribuční funkcí, určit jednu na základě znalosti druhé
- u jednoduchých příkladů sestavit pravděpodobnostní funkci
- u modelových situací vybrat správný typ pravděpodobnostního rozdělení (binomické, hypergeometrické, exponenciální, apod.) a dále s ním pracovat
- vypočítat střední hodnotu, rozptyl a směrodatnou odchylku náhodné veličiny a vysvětlit jejich význam
- provádět výpočty s náhodnou veličinou X s normálním rozdělením - určit pravděpodobnost, že je X v daném rozmezí, najít kvantil/y pro zadanou pravděpodobnost
- konstruovat odhady neznámých parametrů známých rozdělení
- odhadovat parametry rozdělení pravděpodobnosti metodou maximální věrohodnosti
- provést některé jednoduché statistické testy: U-test, test o střední hodnotě při známém rozptylu, test o parametru p binomického rozdělení

Z oblasti numerických metod by absolvent předmětu měl umět:
- najít kořen rovnice f(x)=0 metodou půlení intervalů, Newtonovou metodou, metodou prosté iterace, popsat tyto metody včetně podmínek konvergence
- najít kořen soustavy dvou nelineárních rovnic Newtonovou metodou a metodou prosté iterace
- řešit soustavu lineárních rovnic Gaussovou eliminací s výběrem hlavního prvku, Jacobiho a Gauss-Seidelovou iterační metodou a diskutovat výhody a nevýhody těchto metod
- sestavit pro zadané body Lagrangeův nebo Newtonův interpolační polynom a počítat pomocí něj přibližné hodnoty aproximované funkce, případně i její derivace
- aproximovat funkci pomocí splajnu (lineárního nebo kubického)
- funkci zadanou tabulkou bodů aproximovat metodou nejmenších čtverců pomocí přímky, případně paraboly nebo exponenciály
- rozhodnout, zda je vhodnější použít interpolační polynom, splajn, metodu nejmenších čtverců
- vypočítat přibližnou hodnotu 1. nebo 2. derivace zadané funkce v zadaném bodě
- vypočítat přibližnou hodnotu určitého integrálu lichoběžníkovou a Simpsonovou metodou
- u všech výše uvedených metod popsat jejich princip, vybrat vhodnou metodu pro řešení zadané úlohy, rozhodnout o její konvergenci a zdůvodnit svůj postup řešení.

Prerekvizity

Student by měl být schopen aplikovat znalosti z kombinatoriky na úrovni středoškolského studia: umět vysvětlit, co jsou to variace s opakováním a bez opakování, permutace, kombinace, určit jejich počty, provádět výpočty s faktoriály a kombinačními čísly.
Z předmětů Matematika 1 a Matematika 2 jsou požadovány základní znalosti diferenciálního počtu funkce jedné proměnné a více proměnných a integrálního počtu funkce jedné proměnné. Především by student měl umět kreslit grafy elementárních funkcí, dosadit do funkce, derivovat (včetně parciálních derivací) a integrovat.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky, cvičení na počítači a ostatní aktivity.

Způsob a kritéria hodnocení

Práce během semestru je hodnocena maximálně 30 body (1 projekt za max. 10 bodů a 1 test za max. 20 bodů). Zápočet získá student, který aktivně pracuje na cvičení a z bodovaných aktivit získal v součtu alespoň 10 bodů. Student, který aktivně pracuje na cvičení a z bodovaných aktivit získal méně bodů než 10, přičemž test napsal na alespoň 3 body, může test nejvýše jednou opakovat. Závěrečná písemná zkouška je hodnocena maximálně 70 body.

Informace pro případ distanční výuky v důsledku opatření proti coronaviru:
Pokud nebude možné psát test (za 20 bodů) prezenční formou, bude práce během semestru hodnocena pouze 10 body (1 projekt). Zápočet v tomto případě dostane každý student, který projekt v termínu odevzdá. Závěrečná zkouška bude v takovém případě hodnocena maximálně 90 body.

Informace k testu, projektu a zkoušce:

Test budeme psát prezenčně na přednášce v některém prosincovém týdnu. Zahrnovat bude látku, která byla do té doby probrána. Povolené pomůcky: kalkulačka, nejvýše 3 listy A4 vlastních poznámek.

Projekt bude řešen samostatně a jeho výsledky zadány online v prostředí Maple T.A.. Zadání bude zveřejněno někdy po polovině semestru, termín vypracování bude poslední týden semestru. Přístupové údaje do systému dostanete, až to bude potřeba. Každému studentovi se vygeneruje vlastní zadání, které v prostředí Maple T.A. sám odevzdá. Práce s Maple T.A. je jednoduchá a intutivní, takže se bez dalšího rozptylování budete moci soustředit na svou práci. Hodnocení provádí podle přednastavených pravidel sám software. Dbejte na dodržování formálních pravidel zápisu výsledků.

Povolené pomůcky ke zkoušce: kalkulačka, nejvýše 3 listy A4 vlastních poznámek.

Osnovy výuky

1. Úvod do numerických metod. Numerické řešení soustav lineárních rovnic.
2. Numerické řešení nelineárních rovnic a jejich soustav.
3. Interpolace: interpolační polynom, splajn
4. Metoda nejmenších čtverců. Numerické derivování a integrování.
5. Základy teorie pravděpodobnosti.
6. Náhodné veličiny a jejich číselné charakteristiky
7. Náhodné vektory a jejich číselné charakteristiky
8. Významná rozdělení pravděpodobnosti
9. Zákon velkých čísel, centrální limitní věta.
10. Úvod do statistiky, statistické zpracování dat.
11. Bodové a intervalového odhady. Metoda momentů, metoda maximální věrohodnosti.
12. Testování hypotéz o střední hodnotě a rozptylu, testy dobré shody.
13. Testy korelace, neparametrické testy.

Učební cíle

Cílem předmětu je seznámit studenty se základy dvou odlišných matematických disciplín: numerických metod a pravděpodobnosti a statistiky.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Přednášky nejsou povinné, cvičení jsou povinná. V přpadě nařízené karantény se postupuje podle fakultních předpisů.
V případě studentů ze zahraničí, kteří nemohou navštěvovat cvičení z důvodu neudělení víza, budeme postupovat s přihlédnutím ke konkrétní situaci. Kontaktujte prosím garanta předmětu.

Základní literatura

Fajmon, B., Hlavičková, I., Novák, M. Matematika 3. Elektronický text FEKT VUT, Brno, 2013 (průběžně aktualizováno) (CS)
Hlavičková, I., Hliněná, D. Matematika 3 - Sbírka úloh z pravděpodobnosti. Elektronický text FEKT VUT, Brno, 2015 (průběžně aktualizováno) (CS)
Novák, M., Matematika 3 - Sbírka příkladů z numerických metod. Elektronický text FEKT VUT, Brno, 2015 (průběžně aktualizováno) (CS)

Elearning

Zařazení předmětu ve studijních plánech

  • Program BPC-AUD bakalářský

    specializace AUDB-TECH , 2 ročník, zimní semestr, povinný
    specializace AUDB-ZVUK , 2 ročník, zimní semestr, povinný

  • Program BPC-EKT bakalářský 2 ročník, zimní semestr, povinný
  • Program BPC-MET bakalářský 2 ročník, zimní semestr, povinný
  • Program BPC-TLI bakalářský 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Orientační osnova přednášek (bez zohlednění státních svátků)

1. Úvod do numerické matematiky. Soustavy nelineárních rovnic.
2. Numerické řešení nelineárních rovnic.
3. Soustavy nelineárních rovnic.
4. Interpolační polynom. Splajn.
5. Metoda nejmenších čtverců. Numerické derivování a integrování.
6. Úvod do teorie pravděpodobnosti.
7. Náhodná veličina a její číselné charakteristiky.
8. Náhodný vektor a jeho číselné charakteristiky.
9. Významná rozdělení pravděpodobnosti. Zákon velkých čísel. Centrální limitní věta.
10. Úvod do statistiky.
11. Bodové a intervalové odhady. Metoda momentů. Metoda maximální věrohodnosti.
12. Písemný test
13. Statistické testy.

Cvičení odborného základu

4 hod., povinná

Vyučující / Lektor

Osnova

Procvičování látky aktuálně probrané na přednášce (viz rozpis).

Cvičení s počítačovou podporou

18 hod., povinná

Vyučující / Lektor

Osnova

Procvičování látky aktuálně probrané na přednášce (viz rozpis).

Projekt

4 hod., povinná

Vyučující / Lektor

Osnova

Zpracování projektu (průřez tématy z numerických metod a pravděpodobnosti a statistiky).

Elearning