Detail předmětu

Pokročilé metody v rozhodování

FP-IpmrPAk. rok: 2021/2022

Obsahem předmětu je seznámení studentů s vybranými pokročilými metodami analýz a technikami modelování (fuzzy logika, umělé neuronové sítě, genetické algoritmy, teorie chaosu) formou vysvětlení principů těchto teorií a jejich následných aplikací do manažerské praxe.

Jazyk výuky

čeština

Počet kreditů

6

Zajišťuje ústav

Výsledky učení předmětu

Získané znalosti a dovednosti předmětu umožní absolventům kvalitní a moderní přístup při procesech analýz a modelování v národním hospodářství a soukromém sektoru, organizacích, podnicích, firmách, společnostech, bankách, atd. zejména v manažerské, ale i ekonomické a finanční sféře.

Plánované vzdělávací činnosti a výukové metody

Výuka probíhá formou přednášek, které mají charakter výkladu základních principů, metodologie dané disciplíny a problémů. Cvičení podporují zejména praktické ovládnutí látky vyložené na přednáškách.

Způsob a kritéria hodnocení

K udělení zápočtu bude požadována aktivní účast na cvičeních, odevzdání závěrečné písemné práce, popř. písemný test. Rozsah seminární práce bude činit cca 8 -12 stránek s individuálním zaměřením studenta na problematiku z praxe, vedoucí k řešení za pomoci teorie fuzzy logiky, umělých neuronových sítí nebo genetických algoritmů.
Zkouška je klasifikována podle ECTS. Její provedení je písemnou formou testu s bodovým hodnocením v rozsahu 0-20 bodů. A-20-19;B18-17;C16-15;D14-13;E12-;F10-0.

Osnovy výuky

1. Úvod
2. Fuzzy logika - teorie
3. Fuzzy logika + aplikace – Excel
4. Fuzzy logika – aplikace MATLAB
5. Umělé neuronové site - teorie
6. Umělé neuronové sítě + aplikace MATLAB
7. Genetické algoritmy - teorie
8. Genetické algoritmy + aplikace MATLAB
9. Teorie chaosu
10. Datamining
11. Predikce, kapitálový trh
12. Řízení výroby a řízení rizik
13. Rozhodování

Učební cíle

Cílem předmětu je seznámit se s některými pokročilými a nestandardními metodami analytických a simulačních technik v ekonomii a financích metodou vysvětlení těchto teorií, seznámit se s těmito teoriemi a jejich použitím.

1. Úvod
2. Fuzzy logika - teorie
3. Fuzzy logika + aplikace – Excel
4. Fuzzy logika – aplikace MATLAB
5. Umělé neuronové site - teorie
6. Umělé neuronové sítě + aplikace MATLAB
7. Genetické algoritmy - teorie
8. Genetické algoritmy + aplikace MATLAB
9. Teorie chaosu
10. Datamining
11. Predikce, kapitálový trh
12. Řízení výroby a řízení rizik
13. Rozhodování

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách není kontrolována. Účast na cvičeních je povinná a je systematicky kontrolována. Student je povinen neúčast omluvit. Je plně v kompetenci učitele posoudit důvodnost omluvy. Formy nahrazení zameškané výuky stanoví učitel individuálně.

Základní literatura

DOSTÁL, P.: Advanced Decision making in Business and Public Services, Akademické nakladatelství CERM, 2011 Brno,ISBN 978-80-7204-747-5. (EN)
DOSTÁL, P. Pokročilé metody analýz a modelování v podnikatelství a veřejné správě, CERM, 2008, 430s, ISBN 978-80-7204-605-8. (CS)
DOSTÁL, P, RAIS, K., SOJKA, Z.: Pokročilé metody manažerského rozhodování, Praha Grada, 2005., ISBN 80-247-1338-1. (CS)
THE MATHWORKS. MATLAB – User’s Guide, The MathWorks, Inc., 2021. (EN)

Doporučená literatura

ALTROCK,C. Fuzzy Logic &Neurofuzzy, Book & Cd Edition, 1996, 375 s., ISBN 0-13-591512-0 (EN)
DAVIS,L. Handbook of Genetic Algorithms, Int. Thomson Com. Press, 1991, 385 s., ISBN 1-850-32825-0 (EN)
GATELY, E. Neural Network for Financial Forecasting, John Wiley & Sons Inc., 1996, 169 s., ISBN 0-471-11212-7 (EN)
JANÍČEK, P. Systémové pojetí vybraných oborů pro techniky, CERM, Brno, 2007, 1234 s., ISBN 978-80-7204-554-9. (CS)
PETERS, E. Fractal Market Analysis, John Wiley & Sons Inc., 1994, 315 s., SBN 0-471-58524-6 (EN)
REBEIRO,R.R., ZIMMERMANN,H.J. Soft Computing in Fin. Engineering, Spring Verlag Comp.,1999,509s.,ISBN3-7908-1173-4. (EN)

Elearning

Zařazení předmětu ve studijních plánech

  • Program MGR-IM magisterský navazující 1 ročník, letní semestr, povinný

  • Program MGR-SI magisterský navazující

    obor MGR-IM , 1 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod
2. Fuzzy logika - teorie
3. Fuzzy logika + aplikace – Excel
4. Fuzzy logika – aplikace MATLAB
5. Umělé neuronové site - teorie
6. Umělé neuronové sítě + aplikace MATLAB
7. Genetické algoritmy - teorie
8. Genetické algoritmy + aplikace MATLAB
9. Teorie chaosu
10. Datamining
11. Predikce, kapitálový trh
12. Řízení výroby a řízení rizik
13. Rozhodování

Cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

1. Úvod
2. Fuzzy logika – Excel + Seminární práce Ia
3. Fuzzy logika – Matlab I.
4. Fuzzy logika – Matlab II.
5. Fuzzy logika – Seminární práce Ib Matlab
6. Fuzzy logika – Seminární práce IIa
7. Neuronové sítě I.
8. Neuronové sítě II.
9. Genetické algoritmy I.
10. Genetické algoritmy II.
11. Teorie chaosu, Seminární práce IIb
12. Obhajoba SP
13. Zápočet

Elearning