Detail předmětu

Geometrické algoritmy a kryptografie

FSI-SAVAk. rok: 2024/2025

Základní přehled z teorie mříží ve vektorových prostorech, Voroného dláždění, výpočetní geometrie, komutativní algebry a algebraické geometrie s důrazem na konvexitu, Groebnerovy báze, Buchberegerův algoritmus a implicitizaci. Eliptické křivky v kryptografii, multivariační kryptosystémy.

Jazyk výuky

čeština

Počet kreditů

3

Zajišťuje ústav

Vstupní znalosti

Základy algebry. Schopnost algoritmizace.

Pravidla hodnocení a ukončení předmětu

Zkouška: ústní
Přednášky: doporučené

Učební cíle

Cílem je sbližovat pohled matematika a počítačového vědce (programátora).
Algoritmizace některých geometrických a kryptografických problémů.

Základní literatura

Bernstein, D., Buchmann, J., Dahmen, E., Post-Quantum Cryptography, Springer, 2009 (EN)
Bump, D., Algebraic Geometry, World Scientific 1998 (EN)
Senechal., M., Quasicrystals and Geometry, Cambridge University Press, 1995 (EN)
Webster, R., Convexity, Oxford Science Publications, 1994 (EN)

Zařazení předmětu ve studijních plánech

  • Program N-MAI-P magisterský navazující 2 ročník, letní semestr, povinně volitelný

  • Program C-AKR-P celoživotní vzdělávání v akr. stud. programu

    specializace CLS , 1 ročník, letní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Diskrétní množiny v afinním prostoru.
2. Deloneho množiny.
3. k-mříže, Gramova matice, duální mříž.
4. Řády kvaternionových algeber.
5. Voroného buňky. Facetové vektory.
6. Fedorovova tělesa. Mřížové problémy.
7. Principy asymetrické kryptografie. Systém RSA.
8. Eliptické a hypereliptické křivky. Kryptografie založená na eliptických křivkách.
9. Okruhy polynomů, polynomiální automorfismy.
10. Gröbnerovy báze. Multivariační kryptosystémy.
11. Algebraické variety, implicitizace. Multivariační kryptosystémy.
12. Konvexita v eukleidovských a pseudoeukleidovských prostorech.
13. Rezerva.