Detail předmětu

Moderní mikroelektronické prvky

FEKT-MPC-MPRAk. rok: 2025/2026

Předmět rozšiřuje a prohlubuje poznatky o polovodičových součástkách z předmětu bakalářského stupně studia. Je cílem seznámit studenty s vybranými parametry a vlastnostmi vybraných druhů součástek elektroniky v relaci se základními fyzikálními principy součástek. Studenti budou seznámeni s vlastnostmi moderních polovodičových součástek (JFET, MOSFET a IGBT) na bázi Si, SiC a GaN včetně jejich použití v obvodech elektrotechniky. Cílem praktických zaměstnání je prohloubit teoretické znalosti studentů experimentálním ověřením vlastností vybraných moderních polovodičových součástek s využitím prostředků automatizovaných měření (LabVIEW) a simulací.  

 

 

Jazyk výuky

čeština

Počet kreditů

6

Vstupní znalosti

Jsou požadovány základní znalosti fyziky, matematiky a elektrických obvodů. 

Práce v laboratoři je podmíněna platnou kvalifikací „osoby poučené“, kterou musí studenti získat před zahájením výuky. Informace k této kvalifikaci jsou uvedeny ve Směrnici děkana Seznámení studentů s bezpečnostními předpisy.

 

Pravidla hodnocení a ukončení předmětu

Podmínky zápočtu: absolvování měřených úloh a  odevzdat vypracované protokoly v požadované kvalitě.

Podmínky zkoušky: prokázání znalostí z předmětu v písemné a ústní části zkoušky. 

Bodové hodnocení (max. 100 bodů): max. 30 bodů za práci během semestru; max. 70 bodů za zkoušku. Závěrečná zkouška se skládá ze dvou částí (písemné a ústní) a je celkově hodnocena 70 body. 

 

Učební cíle

Cílem tohoto předmětu magisterské nadstavby je rozšířit a prohloubit poznatky o polovodičových součástkách z předmětu bakalářského stupně studia. Je cílem zdůraznit vztahy mezi fyzikálním principem součástky a vlastní realizací součástky. Předmět by měl zdůraznit souvislosti a vztahy mezi vlastnostmi výchozího polovodičového materiálu a vlastnostmi polovodičové součástky. Na cvičeních se studenti naučí interpretovat základní veličiny v polovodičových materiálech a strukturách. Cílem praktických zaměstnání je prohloubit znalosti experimentálním ověřením vybraných polovodičových součástek. 


Studijní opory

 

Základní literatura

HORÁK M.: Mikroelektronické prvky a struktury, SKRIPTUM VUT 2010 (CS)
KHANNA, Kumar V. Insulated Gate Bipolar Transistor IGBT Theory and Design (EN)
RAZAVI, B. Fundamentals of Microelectronics (EN)

Zařazení předmětu ve studijních plánech

  • Program MPC-NCP magisterský navazující 1 ročník, zimní semestr, povinný
  • Program MPC-MEL magisterský navazující 1 ročník, zimní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Rozvoj a využití mikroelektronicky v praxi (historie, současnost a nové trendy).
2. Přehled fyziky polovodičů – základní vlastnosti.
3. Základy kvantové elektroniky.
4. Energetická pásová struktura polovodičů.
5. Přechod PN a voltampérová charakteristika P-N přechodu, kapacita P-N přechodu.
6. Kontakt kov-polovodič, Schottkyho kontakt, voltampérová charakteristika Schottkyho kontaktu, ohmický kontakt.diody.
7. Polovodičové diody.
8. Aplikovaná elektronika ve spínaných zdrojích – použití REC, SBD, FRD a SW diod se zaměřením na ztráty a účinnost. Trendy použití nových SiC a GaN technologií v praxi (doprava).
9. Heteropřechody.
10. Bipolární tranzistory.
11. Struktura MIS a její vlastnosti.
12. Tranzistor MOSFET, IGBT.
13. Moderní typy tranzistorů FET nebo exkurze v ONSEMI.

Cvičení odborného základu

13 hod., nepovinná

Vyučující / Lektor

Osnova

1. V-A charakteristiky polovodičových diod – měření (statický a dynamický režim). 
2. Počítačové modelování polovodičových diod s využitím SPICE modelů (REC, SBD, FRD a SW) se zaměřením na parametry VF a trr.
3. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
4. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
5. Automatizované měření polovodičových diod (REC, SBD, FRD a SW) a porovnání výsledků s výsledky modelování SPICE modelů ze cvičení 2.
6. Měření na prvcích SiC SBD. Určení parametrů polovodičové diody.
7. Vstupní a výstupní charakteristiky polovodičových prvků (BT, MOSFET). Princip činnosti polovodičových prvků ve spínacím režimu.
8. Měření statických parametrů výkonového MOSFET a SiC MOSFET a jejich chování ve spínacím režimu.
9. Počítačové modelování polovodičových součástek (MOSFET, SiC MOSFET a IGBT) s využitím SPICE modelů.
10. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
11. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
12. Určení parametrů polovodičových prvků (BT, MOSFET a IGBT) z naměřených voltampérových charakteristik a srovnání s katalogovým listem součástek a SPICE modelem.
13. Měření dynamických vlastností SiC MOSFET a IGBT s budícími obvody nebo Exkurze v ONSEMI.

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Osnova

1. V-A charakteristiky polovodičových diod – měření (statický a dynamický režim). 
2. Počítačové modelování polovodičových diod s využitím SPICE modelů (REC, SBD, FRD a SW) se zaměřením na parametry VF a trr.
3. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
4. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
5. Automatizované měření polovodičových diod (REC, SBD, FRD a SW) a porovnání výsledků s výsledky modelování SPICE modelů ze cvičení 2.
6. Měření na prvcích SiC SBD. Určení parametrů polovodičové diody.
7. Vstupní a výstupní charakteristiky polovodičových prvků (BT, MOSFET). Princip činnosti polovodičových prvků ve spínacím režimu.
8. Měření statických parametrů výkonového MOSFET a SiC MOSFET a jejich chování ve spínacím režimu.
9. Počítačové modelování polovodičových součástek (MOSFET, SiC MOSFET a IGBT) s využitím SPICE modelů.
10. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
11. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
12. Určení parametrů polovodičových prvků (BT, MOSFET a IGBT) z naměřených voltampérových charakteristik a srovnání s katalogovým listem součástek a SPICE modelem.
13. Měření dynamických vlastností SiC MOSFET a IGBT s budícími obvody nebo Exkurze v ONSEMI.