Detail předmětu
Moderní mikroelektronické prvky
FEKT-MPC-MPRAk. rok: 2025/2026
Předmět rozšiřuje a prohlubuje poznatky o polovodičových součástkách z předmětu bakalářského stupně studia. Je cílem seznámit studenty s vybranými parametry a vlastnostmi vybraných druhů součástek elektroniky v relaci se základními fyzikálními principy součástek. Studenti budou seznámeni s vlastnostmi moderních polovodičových součástek (JFET, MOSFET a IGBT) na bázi Si, SiC a GaN včetně jejich použití v obvodech elektrotechniky. Cílem praktických zaměstnání je prohloubit teoretické znalosti studentů experimentálním ověřením vlastností vybraných moderních polovodičových součástek s využitím prostředků automatizovaných měření (LabVIEW) a simulací.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Jsou požadovány základní znalosti fyziky, matematiky a elektrických obvodů.
Práce v laboratoři je podmíněna platnou kvalifikací „osoby poučené“, kterou musí studenti získat před zahájením výuky. Informace k této kvalifikaci jsou uvedeny ve Směrnici děkana Seznámení studentů s bezpečnostními předpisy.
Pravidla hodnocení a ukončení předmětu
Podmínky zápočtu: absolvování měřených úloh a odevzdat vypracované protokoly v požadované kvalitě.
Podmínky zkoušky: prokázání znalostí z předmětu v písemné a ústní části zkoušky.
Bodové hodnocení (max. 100 bodů): max. 30 bodů za práci během semestru; max. 70 bodů za zkoušku. Závěrečná zkouška se skládá ze dvou částí (písemné a ústní) a je celkově hodnocena 70 body.
Učební cíle
Cílem tohoto předmětu magisterské nadstavby je rozšířit a prohloubit poznatky o polovodičových součástkách z předmětu bakalářského stupně studia. Je cílem zdůraznit vztahy mezi fyzikálním principem součástky a vlastní realizací součástky. Předmět by měl zdůraznit souvislosti a vztahy mezi vlastnostmi výchozího polovodičového materiálu a vlastnostmi polovodičové součástky. Na cvičeních se studenti naučí interpretovat základní veličiny v polovodičových materiálech a strukturách. Cílem praktických zaměstnání je prohloubit znalosti experimentálním ověřením vybraných polovodičových součástek.
Studijní opory
Základní literatura
KHANNA, Kumar V. Insulated Gate Bipolar Transistor IGBT Theory and Design (EN)
RAZAVI, B. Fundamentals of Microelectronics (EN)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Přehled fyziky polovodičů – základní vlastnosti.
3. Základy kvantové elektroniky.
4. Energetická pásová struktura polovodičů.
5. Přechod PN a voltampérová charakteristika P-N přechodu, kapacita P-N přechodu.
6. Kontakt kov-polovodič, Schottkyho kontakt, voltampérová charakteristika Schottkyho kontaktu, ohmický kontakt.diody.
7. Polovodičové diody.
8. Aplikovaná elektronika ve spínaných zdrojích – použití REC, SBD, FRD a SW diod se zaměřením na ztráty a účinnost. Trendy použití nových SiC a GaN technologií v praxi (doprava).
9. Heteropřechody.
10. Bipolární tranzistory.
11. Struktura MIS a její vlastnosti.
12. Tranzistor MOSFET, IGBT.
13. Moderní typy tranzistorů FET nebo exkurze v ONSEMI.
Cvičení odborného základu
Vyučující / Lektor
Osnova
2. Počítačové modelování polovodičových diod s využitím SPICE modelů (REC, SBD, FRD a SW) se zaměřením na parametry VF a trr.
3. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
4. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
5. Automatizované měření polovodičových diod (REC, SBD, FRD a SW) a porovnání výsledků s výsledky modelování SPICE modelů ze cvičení 2.
6. Měření na prvcích SiC SBD. Určení parametrů polovodičové diody.
7. Vstupní a výstupní charakteristiky polovodičových prvků (BT, MOSFET). Princip činnosti polovodičových prvků ve spínacím režimu.
8. Měření statických parametrů výkonového MOSFET a SiC MOSFET a jejich chování ve spínacím režimu.
9. Počítačové modelování polovodičových součástek (MOSFET, SiC MOSFET a IGBT) s využitím SPICE modelů.
10. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
11. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
12. Určení parametrů polovodičových prvků (BT, MOSFET a IGBT) z naměřených voltampérových charakteristik a srovnání s katalogovým listem součástek a SPICE modelem.
13. Měření dynamických vlastností SiC MOSFET a IGBT s budícími obvody nebo Exkurze v ONSEMI.
Cvičení na počítači
Vyučující / Lektor
Osnova
2. Počítačové modelování polovodičových diod s využitím SPICE modelů (REC, SBD, FRD a SW) se zaměřením na parametry VF a trr.
3. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
4. Sestavení automatizovaného pracoviště pro měření polovodičových součástek v prostředí LabVIEW.
5. Automatizované měření polovodičových diod (REC, SBD, FRD a SW) a porovnání výsledků s výsledky modelování SPICE modelů ze cvičení 2.
6. Měření na prvcích SiC SBD. Určení parametrů polovodičové diody.
7. Vstupní a výstupní charakteristiky polovodičových prvků (BT, MOSFET). Princip činnosti polovodičových prvků ve spínacím režimu.
8. Měření statických parametrů výkonového MOSFET a SiC MOSFET a jejich chování ve spínacím režimu.
9. Počítačové modelování polovodičových součástek (MOSFET, SiC MOSFET a IGBT) s využitím SPICE modelů.
10. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
11. Automatizované měření polovodičových součástek (BT, MOSFET, SiC MOSFET a IGBT) v prostředí LabVIEW.
12. Určení parametrů polovodičových prvků (BT, MOSFET a IGBT) z naměřených voltampérových charakteristik a srovnání s katalogovým listem součástek a SPICE modelem.
13. Měření dynamických vlastností SiC MOSFET a IGBT s budícími obvody nebo Exkurze v ONSEMI.