Detail předmětu

Vybrané matematické metody v mechanice

FSI-RMEAk. rok: 2025/2026

Definice variačních úloh, ukázky ekvivalence integrování diferenciální rovnice a hledání minima vhodného funkcionálu. Slabé řešení. Funkcionály a operátory v Hilbertově prostoru. Variační principy lineární pružnosti. Metoda vážených residuí a přímé variační metody pro řešení okrajových problémů. Metoda hraničních integrálních rovnic. Greenův tenzor. Somiglianovy vzorce. Fundamentální řešení. Metody numerického řešení hraničních integrálních rovnic.  Stabilita pružných soustav, energetické kriterium stability, bifurkační a limitní body. 

Jazyk výuky

čeština

Počet kreditů

4

Vstupní znalosti

Z oblasti mechaniky: Znalost základních pojmů pružnosti a pevnosti (napětí, hlavní napětí, deformace, přetvoření, obecný Hookeův zákon, potenciální energie tělesa). Principy virtuálních posunutí a princip virtuálních prací.
Z oblasti matematiky: Parciální diferenciální rovnice 2. řádu. Základy variačního počtu. Základy funkcionální analýzy (funkcionální prostory, Hilbertův prostor L2).

Pravidla hodnocení a ukončení předmětu

Požadavky pro zkoušku:
- písemný přehledový test základních znalostí a pojmů
- písemné řešení 3 příkladů
- ústní diskuse nad písemnými materiály s případnou doplňkovou otázkou
Podmínky k udělení zápočtu:
- aktivní účast na cvičeních
- dobré výsledky průběžné kontroly základních znalostí
- vyřešení náhradních úloh v případě omluvené neúčasti
Konkrétní podobu splnění těchto požadavků stanovuje vedoucí cvičení v prvním týdnu semestru
Účast na cvičení je povinná. Vedoucí cvičení provádějí průběžnou kontrolu přítomnosti studentů, jejich aktivity a základních znalostí. Neomluvená neúčast je důvodem k neudělení zápočtu. Jednorázovou neúčast je možno nahradit zadáním náhradních úloh, delší neúčast se nahrazuje vypracováním náhradních úloh podle pokynů cvičícího.

Učební cíle

Cílem předmětu je seznámit studenty s některými, hojně užívanými matematickými postupy v mechanice. Jedná se především o variační metody a metody založené na formulaci hraničních integrálních rovnic, které nacházejí praktické uplatnění v široké oblasti aplikací. Využívá se některých základních poznatků z matematické teorie Hilbertových prostorů a parciálních diferenciálních rovnic. Důležitou součástí je pochopení stabilitní analýzy. Z nalezených oblastí stability vyšetřovaných fyzikálních systémů lze usuzovat i na stabilitu příslušných výpočtových algoritmů, kterými se simuluje jejich chování.
Studenti získají přehled o moderních matematických technikách užívaných k řešení okrajových problémů mechaniky kontinua. Uvědomí si různorodost fyzikální podstaty problémů ztráty stability a kmitání a jednotnost matematického aparátu, který se pro řešení používá.

Základní literatura

B. Bittner, J. Šejnoha, Numerické metody mechaniky, ČVUT, Praha, 1992. (CS)
J.N. Reddy: Energy principles and variational methods in applied mechanics. John Wiley&Sons, 2002 (EN)
Satya N. Atluri: The Meshless Method (MLPG) for Domain & BIE Discretizations. CRC Press, 2004. (EN)
W. Wunderlich, W. Pilky, Mechanics of Structures, CRC Press, 2003, Boca Raton. (EN)

Doporučená literatura

F. Maršík, Termodynamika kontinua, Academia Praha, 1999.
K. Rektorys, Variační metody, Academia Praha,1999.
P. Procházka, Základy mechaniky složených materiálů, Academia, Praha, 2001.

Zařazení předmětu ve studijních plánech

  • Program N-IMB-P magisterský navazující

    specializace IME , 1 ročník, letní semestr, povinný
    specializace BIO , 1 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Historický úvod. Definice variačních úloh, ukázky ekvivalence integrování diferenciální rovnice a hledání minima vhodného funkcionálu. Slabé řešení.

Funkcionály a operátory v Hilbertově prostoru. Lineární ohraničené operátory, symetrické a samoadjungované operátory. Kladné operátory a jejich fyzikální význam.

Energetický prostor kladně definitního operátoru. Hlavní a přirozené okrajové podmínky diferenciální rovnice. Zobecněné řešení úlohy o minimu energetického funkcionálu.

Variační principy lineární pružnosti. Základní vztahy, extrémy funkcionálů, klasické variační principy (Lagrangeův, Castiliglianův, Reisssnerův, Hu-Washizu).

Aplikace variačních principů pro odvození řídících rovnic vybraných zatížených těles.

Metoda vážených residuí a přímé variační metody pro řešení okrajových problémů mechaniky. Aproximace uvnitř oblasti a na hranici oblasti. Kolokační metoda, min-max metoda, metoda nejmenších čtverců, ortogonální metody. Treffzova hraniční metoda.

Metoda hraničních integrálních rovnic v lineární pružnosti. Bettiho věty o vzájemnosti prací. Fundamentální řešení pro Laplaceův operátor.

Greenův tenzor. Somiglianovy vzorce Fundamentální řešení pro rovnice elastostatiky. Sestrojení hraničních integrálních rovnic pro smíšenou úlohu elastostatiky.

Metody numerického řešení hraničních integrálních rovnic.

Fyzikální a matematické aspekty stabilitních úloh. Stabilita pružných soustav, energetické kriterium stability, bifurkační a limitní body. Úloha o vlastních číslech a její souvislost s úlohami o vlastních kmitech a stabilitě systému.

Nelineární systémy a kriterium stability. Termodynamické pojetí stability.

Časová rezerva

Cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

Ukázky energetické metody. Úplné systémy funkcí. Fourierovy řady. Kroucení prutu s obdélníkovým průřezem.
Formulace Ritzovy a Galerkinovy metody numerického řešení variačních problémů. Aplikace Ritzovy metody na obyčejnou diferenciální rovnici – ohyb nosníku s proměnným průřezem, který leží na pružném podkladě.
Ilustrace rozdílů mezi klasickou Ritzovou metodou a MKP.
Ilustrace rozšířených variačních principů pro formulaci hybridní MKP.
Hashin- Shtrikmanovy odhady mezí elastických konstant složených materiálů.
Ukázky různých variant metody vážených residuí.
Metoda hraničních integrálních rovnic jako zvláštní případ metody vážených residuí. Stanovení fundamentálního řešení pro 3D a 2D.
Ilustrace metody hraničních integrálních rovnic pro kroucení prizmatického prutu.
Výpočet singulárních a hypersingulárních integrálů.
Ukázky matematických metod pro řešení úloh lomové mechaniky.
Aplikace teorie 1. a 2. řádu pro vyšetření stability. Použití variačních metod pro vyšetření stability. Řešení úloh o vlastních číslech.
Příklady lokalizace (bifurkace) deformace v materiálech s poškozením.
Zápočet.